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Abstract 14 

We study numerically the potential of a multimodal elastic metamaterial to filter and guide Lamb 15 

waves in a plate. Using a sub-wavelength array of elongated beams attached to the plate, and 16 

combining the coupling effects of the longitudinal and flexural motion of these resonators, we create 17 

narrow transmission bands at the flexural resonances of the beams inside the wide frequency bandgap 18 

induced by their longitudinal resonance. The diameter of the beams becomes the tuning parameter 19 

for selection of the flexural leakage frequency, without affecting the main bandgap. Finally, by 20 

combination of the monopolar and dipolar scattering effects associated with the coupled beam and 21 

plate system, we create a frequency-based multiplexer waveguide in a locally resonant metamaterial.  22 

 23 

  24 



Introduction 25 

 26 

Recent advances in elastic metamaterial design have demonstrated the potential of such 27 

metamaterials for the control of wave flow through tuning their mechanical properties at the sub-28 

wavelength scale. Many devices have been successfully tested so far, like lenses [1, 2, 3] or waveguides 29 

[4, 5, 6], which have all been based on different physical principles. For example, focusing across a slab 30 

can be achieved due to anisotropy and spectral overlap [7, 8, 9], gradient index lenses [3], and coupled 31 

resonant modes [10, 11]. Similarly, wave-guides in metamaterials can be obtained through topological 32 

insulation techniques [12] and nonlinear harmonics migration [13], and even simpler, with defect-like 33 

lines [14, 15].   34 

 35 

In the following, we present a combination of these physical principles to build a particular elastic 36 

waveguide; a multiplexer that can spatially filter an incident plane wave into different point-like 37 

sources for the A0 Lamb mode. Such multiplexing is made possible through the overlap of two resonant 38 

modes of the unit cell of our metamaterial. The metamaterial is constituted of elongated beams 39 

attached to a plate, which can couple with the first antisymmetric A0 Lamb mode with two types of 40 

motions, one longitudinal and one flexural. 41 

 42 

We start by recalling previous results for this metasurface made of closely spaced beams. It was first 43 

introduced in 2014 by [16], and it has been studied in many ways since: e.g., with numerical 44 

simulations, analytical treatments, and experimental observations [17, 18, 19, 3]. The dominant effect, 45 

which is not connected to the spatial configuration of the beams (i.e., ordered vs disordered), is linked 46 

to the low quality factor longitudinal resonance of the beams, which creates wide bandgaps and exotic 47 

dispersion curves for the first antisymmetric A0 Lamb mode propagation. On top of this, if the plate is 48 

thin enough, the flexural resonance create narrow frequency band perturbation, affecting both S0 and 49 

A0 Lamb mode. Colquitt et al. [19] proposed an analytical formula for the dispersion curve calculation 50 

of the plate + beam system. In this analysis, the wave propagation inside the metamaterial is governed 51 

by a set of equations, involving the two Lamb modes S0 and A0 in the plate and the two resonances of 52 

the beams (longitudinal and flexural). The longitudinal resonance of the beams only interacts with the 53 

A0 Lamb mode, the flexural resonance interacts both with A0 and S0 through coupling terms (Eq. 2.1a-54 

c in [19]) The dispersion equation is obtained in a closed form but no effective parameters such as the 55 

Young modulus or the Bulk density can be expressed. On the other hand, the flexibility of the model 56 

makes it possible to consider or eliminate the flexural motion of the resonators that is essential in the 57 

proposed multiplexing design. Figure 1 shows dispersion curves computed from Colquitt et al. [19], 58 

with or without the flexural resonance effects (panels (a) and (b)), considering the unit cell parameters 59 



defined in Fig. 1c. The A0 and S0 free plate response (without the beams) are depicted in gray in Fig. 60 

1a. The bandgap induced by the compressional motion is highlighted by the red background color and 61 

the blue curve (Fig 1b) includes the beam flexural resonance effects. Figure 1b highlights that the 62 

flexural resonances may have different effects according to the frequency of the plate waves in the 63 

metamaterial region. In the passband, they interact with the A0 wave but the coupling term is weak 64 

and the A0 wave dominates. In the bandgap, where A0 mode propagation is forbidden, the flexural 65 

resonances generated narrow transmission bands, which creates energy leakage from outside to inside 66 

the metamaterial (and vice-versa).  67 

 68 

In the following, we show that the start of the main bandgap is underpinned solely by the beam length, 69 

and the frequency position of the narrow leakage inside the bandgap due to the beam flexural 70 

resonance is a function of both the beam length and diameter. Based on this observation, we propose 71 

here a passive spatial multiplexer with a clear understanding of the physics, controlling the two types 72 

of beam resonances with independent geometrical parameters, i.e. length and diameter. It has the 73 

potential for mechanical filtering A0 Lamb wave in a narrow frequency band, over a wide range of 74 

frequencies. Numerical simulations show that the multiplexer waveguides that result have negative 75 

refraction indices. Finally, we show that the geometrical periodicity inside of the multiplexing line 76 

strongly influences the efficiency of the transmission through the waveguide, highlighting a Fano + 77 

Bragg scattering in play.  78 

 79 

Theoretical approach  80 

 81 

Starting with the fully elastic formulation from Colquitt et al. [19], we estimate the consequences of 82 

changing the resonators diameter on the main bandgap and on the narrow flexural leakage 83 

independently. Results of this analysis are presented in Fig. 2b, in a restricted frequency band including 84 

the end of the passband (~5 kHz) and the targeted leakage frequency interval (~6 kHz). The main 85 

bandgap induced by the compressional motion is highlighted by the red background color. The flexural 86 

resonances create three distinct narrow bands that leak inside the bandgap, depending on the beam 87 

diameter, as highlighted with the dotted square in Figure 2b. Changing the resonators diameter thus 88 

has a significant impact on the leakage through the flexural resonance, without affecting the main 89 

bandgap.   90 

 91 

These results are used here to build a multiplexer by introduction of local defects into the metamaterial 92 

waveguide. These defects are obtained by changing  the beam diameter for one line of beams, hence 93 

by de-tuning their flexural resonances. In practice, each resonance, either longitudinal or flexural, 94 



results in a phase jump at the bottom of the beams. The longitudinal resonance is associated to the 95 

up-and-down beam motion that induces a negative apparent density as seen by the plate [Williams et 96 

al. 2015, Lott et al. 2019] with a monopolar radiation into the plate. Similarly, the flexural resonance 97 

induces a bending momentum at the bottom of the beams and thus a dipolar radiation into the plate. 98 

The resulting A0 scattered field differs substantially depending on the resonators motion.  99 

 100 

The tuned leakage through the metamaterial region represents the association of monopole and 101 

dipole resonances, which is crucial to obtain double-negative materials, as is demonstrated herein. In 102 

the perspective of further experimental realization with this device, the geometry constrain here may 103 

require a 3D printing technic to create the sample, with a resolution on the geometry construction less 104 

than 0.1 mm.  105 

 106 

Numerical simulations  107 

 108 

We used the COMSOL simulation software to study the propagation of the antisymmetric A0 Lamb 109 

mode into a metasurface made of 11 × 21 regularly spaced beams. The simulation box is depicted in 110 

Figure 2a, which includes the beam cluster (Fig. 2a-1) and the absorbing areas (Fig. 2a-2). The source 111 

is a plane wave (Fig. 2a-3) that is emitted from the right side of the metasurface region and transmitted 112 

through the beam cluster.  113 

 114 

For the propagating simulations, the system is discretized using two-dimensional (2D) shell elements 115 

to model the plate, and 1D beam elements for the resonators, both of which are available in the 116 

structural dynamic toolbox of COMSOL. This strategy greatly decreases the model complexity and the 117 

computing time, while preserving the full physics of the system. Using a 2-mm thick plate in the 118 

numerical scheme, both A0 and S0 are reproduced from 0 kHz to 10 kHz, along with the compressional 119 

and flexural motion of the beam. We use the same material and geometry as defined in Figure 3c. It is 120 

now straightforward to introduce local changes in the beam diameter (Fig. 1c), the key parameter in 121 

this study, without worrying about meshing instabilities that would arise using full 3D finite elements.  122 

 123 

The absorbing boundaries are designed using the approach described in [21], with eight different areas 124 

that surround the model zone representing the space-dependent attenuation (which increases 125 

exponentially from the boundary of the propagating zone to the end of the simulation box). Finally, 126 

the full computation takes approximatively one hour in the frequency domain (around 45 seconds per 127 

frequency). This strategy provides a high frequency resolution in a narrow bandwidth, with limited 128 

numerical cost.  129 



 130 

 131 

Qualitative and quantitative results 132 

 133 

We ran three different simulations with varying diameters for the central line of the beam cluster (i.e., 134 

the waveguide). The background metamaterial consists of beams with a diameter of 5.5 mm and a 135 

length of 61 cm. The central line diameters are 5.2 mm, 5.3 mm, and 5.4 mm for the three simulations. 136 

Figure 3 shows the qualitative results of the transmitted intensities here. In the frequency band of 6.0 137 

kHz to 6.3 kHz (subpanels 1 to 3 in Figure 3), each selected diameter (subpanels a to c in Fig. 3)  creates 138 

a leakage at a very precise frequency, thus realizing a frequency-based selector for the A0 Lamb mode.  139 

 140 

We also compute the apparent transmission coefficient, as well as the effective wavenumber inside 141 

this waveguide. Figure 4 shows the overall results for the normalized transmitted coefficient (Fig. 4a) 142 

and the effective wavenumber (Fig. 4b). In Figure 4a, the three simulations are normalized by the 143 

maximum transmitted intensity in the 6.00 kHz to 6.35 kHz band. At around 6.40 kHz (not shown here), 144 

the background array made with 5.5-mm-diameter beams globally resonated, which breaks up the 145 

wave guidance along the central line. Below this frequency, the three colors in Fig. 4a (blue, red, black) 146 

that correspond to the three above-mentioned central line diameters highlight three separate 147 

transmission peaks.  148 

 149 

For the wavenumber, we simply determine the wave speed along the waveguide. We select three 150 

regions to compute the effective wavenumber around each of the transmitted peaks of the three 151 

simulations, as plotted in Figure 4b in a f − k frequency-wavenumber graph. We compute the spatial 152 

Fourier transform of the wavefield along the line, and select the propagative wavenumber in the 153 

positive y-direction.  154 

 155 

The negative slope of the phase speed with respect to frequency can be noted here. With a negative 156 

slope in the f-k graph, and thus a negative group velocity, the double negativity typical response of this 157 

metamaterial is highlighted. Due to the periodicity of the designed array, we display the calculation of 158 

the effective wavenumber on the Brillouin edges (Γ − X) (Fig. 4b). However, we do not observe any 159 

spectral folding after ′X′ here. Note that the Γ − X direction (Fig. 4b) corresponds to the the reciprocal 160 

space ‘y’ direction in Figure 2c. 161 

 162 

Also, along with these three detected bands, we compute the spatial–spectral amplitude of the 163 

tangential and normal components of the wavefield that propagates along the positive y-direction, for 164 



the previously estimated wavenumber. We estimate the horizontal versus vertical motion of the plate 165 

through the spatial Fourier transform of both in-plan (h) and out of plane (v) motion of the plate 166 

surface. The obtained values are reported in color scale in Fig. 4b.With the ratio u/v (i.e., the tangential 167 

vs vertical components), we observe smooth transition between ‘quasi’ tangential waves and ‘quasi’ 168 

normal ones. This transition was already expected by Rupin et al. [22], who also described the coupling 169 

between the two orthogonal Lamb modes of the free plate (A0-S0) in this frequency regime. 170 

 171 

Discussion 172 

 173 

Previous analytical studies of such a plate+beam system have highlighted the dependency between 174 

the slope of the quasi-flat band induced by the flexural resonance inside the bandgap and the overall 175 

geometric properties of the system. In particular, the thickness of the plate substrate [19] influences 176 

the emergence of a negative index transmission band. Indeed, if the plate is thin enough, the bending 177 

moment induced by the flexural resonance of the beams can add negative mass density, in addition to 178 

the negative Young’s modulus induced by the longitudinal resonance inside the bandgap [Williams et 179 

al. 2016], and thus yield a negative group velocity [23]. 180 

 181 

In practical instances, double-negative materials come with high attenuation effects [10]. Here, due to 182 

the finite size of the system, our transmission coefficient calculation does not capture quantitatively 183 

the reflection magnitude at the plate/metamaterial interface. However, previous experimental and 184 

numerical data have demonstrated that leakage of such a flexural resonance inside the wide bandgap 185 

induced by the compressional motion of the beams can be easily detected [22, 24]. In the present 186 

study, we move our attention to the propagation mechanism along the defect line through the 187 

introduction of progressive disorder in the multiplexer geometry, to thus identify the scattering regime 188 

in play. The results of such simulations are shown in Figure 4.  189 

 190 

The numerical model is similar to that shown in Figure 3b. The disorder is implemented by induction 191 

of a small spatial random variation along the waveguide (0-6 mm, drawing from a uniform distribution). 192 

For each disorder value, three simulations were run, with calculation of the mean transmitted intensity 193 

spectra. The results of these spectra are shown in Figure 5a. With disorder, the transmission peak 194 

decreases in amplitude. The mean transmitted intensity integrated on the full frequency band (6160-195 

6240 Hz) is shown in Figure 5b as a function of the disorder, where the error bars represent the 196 

standard deviations of the simulation results for each disorder value. It is worth noting that the 197 

fluctuations over disorder are stronger at a single frequency than in the integrated frequency band.  198 

 199 



Figure 5c-e (Fig. 5c is the same as Fig. 3b, but at 6195 Hz) shows the intensity map at 6195Hz for three 200 

particular values of the disorder (i.e., 0, 2, 5 mm random displacement of the beams). In Figure 5c, the 201 

beams are depicted as small circles with a black-to-white color scale as the logarithm of the beam 202 

motion intensity, and a green-to-yellow color scale as the normalized transmitted intensity (the norm 203 

is the maximal transmitted intensity with 0 disorder, as in Fig. 3). We observe that with increasing 204 

disorder, the intensity diffusion across the central line might stop. This result differs from previous 205 

experimental studies showing the non-effect of the randomness of the beams positions on the main 206 

A0 passband [16]. Here, the spatial ordering is essential in this propagative branch, making the coupling 207 

between S0 and A0 Lamb mode possible, from the tangential force in the low spatial frequency regime 208 

(low-k values), to the predominance of the bending motion in the high spatial frequencies (high-k 209 

values). We conclude that the propagation in this frequency band is due to Bragg dipolar scattering 210 

between successive aligned beams, which is highly sensitive to disorder. In the absence of disorder, 211 

the combination met the criteria for a one dimensional negative index material, resulting in the 212 

negative slope in the f-k representation of Figure 4b.  213 

 214 

Conclusion 215 

 216 

We demonstrate here the possibility to model a device that can filter and guide low-frequency Lamb 217 

waves in a thin plate using the modal overlap of the flexural and compressional resonances of the 218 

beam-like resonators. The frequency position of the flexural resonance where the leakage is observed 219 

can be adjusted by acting on the diameter of one line of beams, which does not affect the longitudinal 220 

resonance that controls the main bandgap. Building on these results, we model a mechanical wave 221 

multiplexer that can select the narrow frequency flexural Lamb mode inside a wide frequency 222 

bandgap.  223 

 224 

With the combination of two scattering modes, one monopolar and one dipolar, the resulting effective 225 

material has a negative refraction index with fast evolution of wave polarization over frequency. The 226 

effects of the randomness of the beam positions on the waveguide efficiency are also evaluated, and 227 

these confirm the predominance of a Bragg scattering mechanism of intensity diffusion for the flexural 228 

resonance of the beams, in addition to the mechanical constraints at the beam attachment due to 229 

compressional resonance inside the main bandgap. These results highlight the strong interplay 230 

between hybridization due to local resonance, hybridization between different resonant modes, and 231 

Bragg scattering versus incoherent scattering. We believe these results can be adapted to any locally 232 

resonant system if the individual resonators overlap in their Fano resonances. 233 

 234 
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Figures 301 

 302 

Figure 1: Theoretical dispersion relation for an infinite array of beams [Colquitt 2016]. (a) Dispersion 303 

curves obtained neglecting the beam’s flexural resonance effects. (b) Dispersion curves with the 304 

flexural resonance effects. (c) Cell dimensions and properties: Lattice constant a = 2 cm, beam length 305 

L = 0.61 m, beam diameter db = 5.5 mm, plate stiffness h = 2 mm and, aluminum for the material (E = 306 

69 GPa, nu = 0.33). 307 
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 311 

Figure 2: Simulation procedure. (a) The metamaterial (a-1) is made of 11 × 21 regularly spaced beams 312 

attached on a 2-mm-thick plate surrounded by absorbing areas (a-2). A plane wave (a-3) is emitted 313 

from the right side of the beam cluster. (b) Typical band structure for three beam diameters. Inside 314 

the bandgap (redish background area), each flexural resonance creates a different narrow leakage 315 

(dashed rectangle area). (c) Using a different beam diameter along a central line inside the beam 316 

cluster tunes the flexural resonance position without affecting the beginning of the bandgap in this 317 

region.  318 
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 321 

 322 

Figure 3: Normalized intensity maps for the three-designed waveguides (normalized by maximum 323 

transmitted intensity for each simulation box). The white points represent the 5.5-mm-diameter 324 

beams of the cluster, and the black points indicate the 5.2 mm (a), the 5.3 mm (b), and the 5.4 mm (c) 325 

diameter beams of the central line. From top to bottom (a-c): increasing the beam diameter of the 326 

central line increases the frequency of the flexural resonance and tunes the leakage through the beam 327 

cluster. 328 
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 332 

Figure 4: (a) Normalized transmission coefficients for the three simulations (blue, red, black) that 333 

create three different leakages. (b) Band structure of the created waveguides (blue, red, black circles). 334 

The color scale in (b) depicts the wave polarization through the u/v ratio (i.e., tangential vs normal 335 

components), computed from the spatial Fourier transform.  336 
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 338 

 339 

Figure 5: Effects of the randomness of the central line beam positions on the transmission intensity. 340 

(a) Mean transmission spectra for the 5.3-mm-diameter beams in the central line and the different 341 

values of the disorder. (b) Normalized transmitted intensity versus amplitude of the disorder, as 342 

indicated. (c) same as Figure 2b at 6195Hz. (d, e) Intensity map at 6195 Hz for 2 mm and 5 mm random 343 

displacements of the beams in the central line. The intensity maps are normalized by the maximum 344 

transmitted intensity for the case without disorder. (c-e) The beam motion amplitude is depicted as a 345 

‘log’ scale.  346 


