
Fundamentals and Applications of Acoustic
Metamaterials

Edited by Vicent ROMERO-GARCÍA and Anne-Christine HLADKY-HENNION

November 21, 2018



2



Contents

Chapter 1. Locally resonant metamaterials for plate waves: the respec-
tive role of compressional versus flexural resonances of a dense forest of
vertical rods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Martin LOTT and Philippe ROUX

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2. Experimental configuration of the metamaterial at the lab scale . . . . . 13
1.3. Interpretation of dispersion curve restricted to the rod compressional

resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4. The role played by flexural resonances of the rods . . . . . . . . . . . . 24
1.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9



10



Chapter 1

Locally resonant metamaterials for plate
waves: the respective role of compressional

versus flexural resonances of a dense forest of
vertical rods.

Recent experimental and numerical studies have showed that at the geophysics
scale, locally resonant metamaterials have potential future applications to seismic en-
gineering. To pursue investigations in geophysics with media that are mostly unknown
and heterogeneous, more understanding is needed in terms of the interactions between
surface waves with different polarization and the various types of resonance of a unit
cell of a metamaterial. Benefitting from an analog experiment at the laboratory scale,
this Chapter revisits the interactions between plate Lamb waves and a cluster of long
vertical rods – with easy-to-identify compressional and flexural resonances – attached
to it. Through densely sampled spatial measurements, particular attention is paid to
the analysis of the complex wavefield that results from this combination of resonances,
on the dominant Lamb wave mode in the plate.

1.1. Introduction

Locally resonant metamaterials derive their effective properties from hybridization
between their resonant unit cells and the incoming wave [LIU 00, PSA 02, FAN 06,
GUE 07, LER 09, COW 11, LEM 11, LEM 13, CHR 12, ACH 13, RUP 14]. This
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12 Acoustic Metamaterials

phenomenon is well understood for waves that propagate in media where the unit
cells respect the symmetry of the incident field [PEN 99, SMI 00]. However, in many
systems, such as a set of vertical rods that interact with plate waves, or a pine tree
forest that interacts with surface seismic waves, several modes with orthogonal sym-
metries can coexist at any given frequency, while the resonant unit cells themselves
can support different types of resonance [RUP 15, RUP 17].

In this Chapter, we revisit metamaterial physics at the mesoscopic scale. At the
seismic scale, recent studies have demonstrated that trees can behave as seismic res-
onators with flexural and compressional resonances, whereby a forest of trees repre-
sents a seismic-scale candidate for a locally resonant metamaterial for surface waves
[BRÛ 14, COL 14, COL 16b, COL 16a, COL 16c, ROU 18]. Spatial sampling in the
METAFORET experimental configuration (for details, see: https://metaforet.
osug.fr/) was performed with a dense array of geophones in and around a pine for-
est with a typical scale of the order of 100 m (Fig. 1.1a). Mostly surface waves were
excited by a vibrometer, with controlled and programmable source signals with hor-
izontal and vertical polarizations that coupled with both flexural and compressional
resonances. The goal of the experiment was to establish a link between seismic-
relevant scales and microscale and mesoscale studies that pioneered the development
of metamaterial physics in optics and acoustics. The main results of the METAFORET
experiment were the presence of frequency band gaps for Rayleigh waves associated
with compressional and flexural resonances of the trees, which confirmed the strong
influence that a dense collection of trees can have on the propagation of seismic waves
[ROU 18].

However, the seismic experiment also indicated the need to better understand the
respective roles of these resonances on the wavefield pattern in the context of meta-
material physics. We thus proceed by analogy in the present Chapter, going back to
the case at the laboratory scale, as a dense set of vertical rods attached to a plate with
typical length now of the order of 1 m (Fig. 1.1b). In the context of a locally reso-
nant metamaterial, the plate-plus-rods system allows the study of the respective roles
of flexural and compressional resonances on the hybridization of the plate waves, as
these resonances induce a break in the orthogonality between the Lamb wave modes
of the free plate.

The Chapter is organized as follows. Section 1.2 describes the experimental set-up
at the laboratory scale. In Section 1.3, the field pattern issued from point-like sources
located either inside or outside the metamaterial are analyzed and discussed in the
framework of a simplified theoretical approach, where only one type of Lamb waves
in the plate and one type of resonance of the rods (i.e., compressional resonance) are
considered. The complete wavefield pattern is discussed in Section III, and the role of
flexural resonances of the rods is magnified through different examples.



Locally resonant metamaterials for plate waves 13

Figure 1.1 – Examples of locally resonant metamaterials at different scales for seismo-
elastic waves. (a) Seismic deployment (yellow dot) at the interface between a free field
and a dense pine tree forest. (b) Squared area of a random arrangement of vertical
metallic rods glued to a thin aluminum plate. (c) Mechanical similitudes of the unit
resonant cell for both systems, with their respective frequency bands of interest.

1.2. Experimental configuration of the metamaterial at the lab scale

Throughout this study, analogy is made between the METAFORET seismic experi-
ment and this laboratory scale experiment, as a ’forest’ of 61-cm-long, 6-mm-diameter
vertical rods attached to a thin metallic plate (Fig. 1.1; for a more general description,
see Roux et al. [ROU ]). Unlike the seismic configuration, the rods and plate are made
of the same material, which provides perfect coupling for wave propagation. At low
frequencies (<10 kHz), the 6-mm-width plate supports two types of waves known as
the symmetric and anti-symmetric modes, as S0 andA0 [ROY 00]. In practice, theA0

waves are mostly vertically polarized and can be characterized by out-of-plane (verti-
cal) displacement, while in-plane (horizontal) displacements in the plate are described
by the S0 waves. A few point-like piezo sources located either inside or outside the
metamaterial are attached to one side of the plate, and these mostly excite A0 Lamb
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waves. The spatial arrangement of the rods is random, and the average distance d be-
tween rods is such that 10 < d/λ < 4, where λ is the A0 wavelength in the plate over
the frequency band of interest.

With this experimental configuration, only the out-of-plane wavefield can be mea-
sured on the plate, through a motorized laser vibrometer that covers a large surface
inside and outside the metamaterial area, as depicted schematically in Fig. 1.2. The
received signals are highly dispersed because of reverberation at the plate boundaries.
Attenuation in the metallic plate is low for the A0 waves. The billiard-table shape of
the plate makes the field spatially random after a few reverberations from the plate
boundaries. As will be shown later, these reverberations are of great importance for
both array analysis and frequency-time analysis of the received signals in the metama-
terial.

This laboratory scale configuration allows us to carefully study the roles of the
flexural and compressional resonances inside the forest of rods for the out-of-plane
wavefield measured on the plate surface. In the [1 kHz, 10 kHz] frequency band-
width, the wave propagation in the complex plate-plus-rod system deals with S0 and
A0 modes in the free plate and two types of resonance – flexural and compressional
resonance – that should mostly couple with the S0 and A0 waves, respectively.

In parallel with the experimental work, numerical simulations performed with
three-dimensional elastic finite-element code in the plate-plus-rod metamaterial con-
firm that when a vertical force with out-of-plane polarization excites the 6-mm-width
metallic plate, there is almost no energy in the S0 mode [COL 14]. This means that to
a first approximation, the potential conversion of the excited A0 waves to S0 modes
upon scattering of the resonating beams can be neglected in this plate-plus-rod con-
figuration.

We expect things to be very different with a thinner plate (i.e., more flexible),
where both in-plane and out-of-plane wavefield components can be excited through
bending and flexural moments at the interface between the plate and the rods. In such
a case, both flexural and compressional resonances can modify the bandgap struc-
ture, which would require the addition of the in-plane component to the theoretical
approach, as described by Colquitt et al. [COL 17].

In Fig. 1.2d, the spatially averaged Fourier spectra measured both outside and
inside the disordered metamaterial reveals two wide band gaps, which start at 2 kHz
and 6 kHz.Rupin et al. [RUP 14] showed that the shape and intensity of the band gaps
are independent of the random organization of the rods. As expected, when calculated
in the passband, the spectral intensity of the reverberated fields are similar inside and
outside the metamaterial.
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Figure 1.2 – Experimental set-up at the laboratory scale. A piezo-electric point-like
source (a) generates A0 Lamb waves in the aluminum plate. The particle velocity
(b) is measured using an out-of-plane laser Doppler velocimeter (c) attached to a PC-
controlled (d) motorized robot arm (e). The spatial cover of the robot onto the plate
is shown in red (f). The metamaterial (g) is made of 100 vertical rods glued to the
opposite side of the plate (black square). The Fourier analysis of the strongly rever-
berated wavefield (h) measured on the plate surface either inside (in blue) and outside
(in red) the forest of rods shows both wide frequency passbands and stopbands where
no energy penetrates inside the metamaterial (i).

1.3. Interpretation of dispersion curve restricted to the rod compressional reso-
nances

Taking advantage of the spatially uniform two-dimensional sampling of the wave-
field in the metamaterial region, the effective properties of the wave propagation of the
A0 Lamb waves inside the metamaterial were described by Rupin et al. [RUP 14] in
the following way. Considering successive time windows associated with long-term
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reverberations, and when filtered in a small bandwidth, the averaged spatial Fourier
transforms of the field recorded inside the metamaterial revealed a circle, which con-
firms the equi-distribution of the wave components for all possible azimuthal direc-
tions. At each frequency, the circle radius gives an accurate measure of the effective
velocity inside the metamaterial, from which the dispersion curve can be plotted (for
more details, see Fig. 6.6 in Roux et al. [ROU ]).

In the present study, we proceed differently. We calculate the ensemble-averaged
two-point correlation function C(ω,dr) at pulsation ω, and for all possible receiving
points separated by distance dr inside the metamaterial. The two-point correlation
functions are calculated between points −→r and −→r +d−→r inside the metamaterial area:

CT (ω,d−→r ) =
〈ΨT (ω,−→r )Ψ∗T (ω,−→r + d−→r )〉−→r

〈| ΨT (ω,−→r ) |2〉−→r
, (1.1)

where ΨT (ω,−→r ) is the field measured from the laser vibrometer at pulsation ω for
a finite-duration recorded window of duration ∆T , starting at time T . We then take
advantage of the equi-distribution of the spatial wavefield inside the ergodic cavity-
like plate, by averaging the two-point correlation over all azimuth θ:

CT (ω,d−→r ) = 〈CT (ω,d−→r )〉θ. (1.2)

Finally, we also benefit from the long-term reverberation of the wavefield inside the
plate to select as many time windows T as are available, each of which is interpreted
as a different source realization for the two-point correlation function:

C(ω,d−→r ) = 〈CT (ω,d−→r )〉T . (1.3)

Thus, the ensemble-averaged two-point correlation function results from three dif-
ferent averaging process: (1) from the set of positions (x, y) of all of the receiving
points inside the metamaterial from which inter-distances dr are calculated; (2) from
a set of five piezo-sources located outside the metamaterial area; and (3) from the
long reverberation time T of the strongly reverberated wavefield inside the cavity. In
practice, we choose ∆T = 10 ms, which is small compared to the total reverberation
time of the cavity (> 250 ms), and T expands from 10 ms (for the wave mixing to be
sufficient) to 250 ms (where ambient noise starts to dominate).

The real part of the two-point correlation function C(ω,dr) is plotted in Fig. 1.3a
at frequency f = 5000 Hz, and for all frequencies inside and outside the metamaterial
in Fig. 1.3(b, c). In Fig. 1.3b, the normalization coefficient calculated for the denom-
inator of Eq. 1.1 is plotted (black line) from the averaged intensity measured from
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Figure 1.3 – (a) Real part of the averaged two-point correlation function (normal-
ized) measured at 5 kHz for all of the receiver pairs located inside the metamaterial
region (blue). The modeled plate Green’s function is plotted in red. (b) Averaged two-
point correlation versus frequency measured inside the metamaterial (c) and outside
the metamaterial. The black line in (b) corresponds to the averaged intensity versus
frequency measured inside the metamaterial.

all receiving points inside the metamaterial. This explains why reaches higher values
in the passband (where the wavefield propagates inside the metamaterial) than in the
stopband (where almost no energy penetrates into the metamaterial).

We then model C(ω,dr) calculated in the passbands with the two-dimensional
Green’s function for an infinite plate G0(ω,dr) defined from the Bessel and Hankel
functions of the second kind [FAH 04] as:
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C(ω,dr) ∝ G0(ω,dr) = H
(2)
0 (kBdr)− i 2

π
K0(kBdr), (1.4)

where keff = ω/ceff is the effective propagating wavenumber of the A0 waves
with effective velocity ceff = <(ceff ) + i=(ceff ). In practice, <(ceff ) corre-
sponds to the effective velocity for wave propagation, and =(ceff ) is linked to the
scattering attenuation (as the intrinsic attenuation is negligible here), and provides

a measurement of the elastic mean free path
| ceff |2

ω=(ceff )
, which is classically de-

fined in multiple scattering field theory as the attenuation of the coherent wavefield
[DER 01a, DER 01b]. In Fig. 1.4a, the wave propagation properties in the passband
of the metamaterial are summarized as a single dispersion curve (blue dots) computed

as k̃eff = <(keff ) =
ω<(ceff )

| ceff |2
. The dispersion relations of the A0 Lamb mode

calculated with the same procedure outside the metamaterial area is superimposed for
comparison (purple dots). The mean free path l in the passband (not shown here) is
much larger than the effective wavelength, as k̃eff l � 1 , which confirms that no
scattering attenuation pollutes the wavefield in this frequency band.

In recent years, we have developed an analytical approach to describe the physics
properties of multi-resonant metamaterials for Lamb waves propagating in plates (see
Ref. [WIL 15]). This theoretical approach neglects the in-plane wavefield compo-
nent (which cannot be measured by the laser vibrometer) and the flexural resonance
of the rods. The metamaterial consists of a 10 × 10 uniform, periodic array of long
rods attached to the surface of a plate that forms the substrate in which anti-symmetric
A0 Lamb waves are excited. It was then shown that the A0 Lamb wave propagation
through the metamaterial can be accurately modeled using a simplified approach that
replaces the two-dimensional array with a one-dimensional beam with a linear array of
10 rods. The wave propagation problem is solved rigorously for this one-dimensional
system by formulating a scattering matrix at a single rod, found from the boundary
conditions at the rod/ beam interface, and including both evanescent and propagating
waves in the beam. To predict the transmission through the linear array of rods, this
scattering matrix is used to set up an eigenvalue problem, along with the boundary
conditions between the adjacent unit cells. The eigenvalues are determined exactly,
and then they are approximated to a long wavelength expansion to determine the sim-
ple expression for the effective wavenumber keff :

keff = kp

[
Mb

M

tan(kbLb)

kbLb
+ 1

]1/4
. (1.5)

In Eq. 1.5, kp is theA0 wavenumber in the free plate,Mb is the total mass of a rod,
andM is the mass of the L×L plate area, where L = 2 cm corresponds to the averaged
inter-rod distance, with Mb/M = 8.02 in the present configuration. Finally, the rod
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Figure 1.4 – Frequency-wavenumber representation of the plate-plus-rods system. (a)
The dispersion curves are obtained for a source outside the metamaterial, and are com-
puted from the averaged two-point correlation function inside (blue dots) and outside
(grey dots) the metamaterial region. Theoretical results are represented with solid
purple (passband) and yellow (stopband) lines. (b) The attenuation inside the second
bandgap is computed from a source located within the metamaterial region. The inset
shows the real part of the wavefield at frequency f = 6400 Hz for every receiver, as a
function of the distance to the source.

length is Lb = 61 cm, and we have kb = ω/cb with cb defined as the nondispersive
wave velocity in the rod, calculated from Young’s modulus Eb and density ρb, such
that cb = 5055 m.s−1.

The dispersion relation shows bending and anti-bending branches that are modeled
through a tangential dependence on the rod length. Both the rod length and the additive
mass on the plate drive the hybridization effect of this locally resonant metamaterial.

In Fig. 1.4a, the modeled dispersion relation (purple line) is compared to the
experimental dispersion curve (blue dots) inside the metamaterial, as calculated from
C(ω,dr), with excellent agreement demonstrated. When the set of multi-resonant
rods is restricted to compressional vibrations that have similar polarizations as the A0

Lamb wave out-of-plane displacements in the plate, this produces two wide stopbands
in the frequency domain from 0 kHz to 10 kHz. Note that the stopband and passband
boundaries depend on the minima and maxima of the rod impedance (Fig. 1.5c),
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calculated as a vertical force on the plate, as shown by Williams et al. [WIL 15]:

Zb = −iρbAbcb tan(kbLb), (1.6)

where Ab is the cross-section of one rod.

To confirm this result, the rod response is measured at the tip of a single rod that is
attached to the plate but isolated from the metamaterial (Fig. 1.5a). One accelerom-
eter is attached at the tip of the rod, to measure the vertical displacement of the field
inside the rod (black arrow). The flexural motion of the rod is measured using a laser
vibrometer that is horizontally directed toward the rod tip (red arrow). A set of three
accelerometers are glued to the plate at the bottom of the rod, to deconvolve the plate
motion from the rod response.

When excited by a piezo source attached to the plate in the far field, the rod re-
sponse shows both low-Q compressional resonances measured from the vertical mo-
tion captured at the accelerometer, and high-Q flexural resonances measured from the
horizontal motion recorded by the laser vibrometer (Fig. 5b). COMSOL simulation
was performed for a single rod attached to the free plate, and this provides the modal
deformation both along the rod and on the plate at three frequencies close to the flex-
ural or compressional resonances (Fig. 1.5(d-f)). Two observations can be made from
these numerical simulations. First, the modal deformations of the single rod in Fig.
1.5(e, f) are in agreement with the forced free-impedance calculations (Eq. (1.6))
obtained in the framework of the theoretical approach (Fig. 1.5c) led by Williams
et al. [WIL 15], which confirms the point-like normal force behavior of each rod of
the metamaterial on the plate at these frequencies. Secondly, the plate deformation
is maximal at a frequency close to the start of the passband (i.e., compressional res-
onance; Fig. 1.5e) and minimal at a frequency close to the start of the stopband (i.e.,
compressional anti-resonance; Fig. 1.5f). When generalized to the metamaterial be-
havior, the plate would appear to be clamped (i.e., no displacement) at the start of the
bandgap, and on the contrary, the plate would be allowed to move freely (i.e., maxi-
mum displacement) at the start of the passband. Again, this is in agreement with the
general wave phenomena observed with the plate-plus-rods system.

When compared to the dispersion curve in Fig. 1.4, we observe that the bandgap
starts almost at the anti-resonance, and ends almost at the resonance of the rod impedance,
as expected from Eq. (1.5). The ’almost’ here is determined by the distance between
the beams (or more precisely, the average square root of the mean surface occupied
by a beam in the metamaterial) and the mass of the beam Mb, through the Mb/M
ratio in Eq. (1.5). At the anti-resonance (Fig. 1.5e), the plate appears to be clamped
by the collection of rods, and no motion is allowed in the metamaterial region, which
defines the start of the bandgap. On the contrary, the plate motion induced by the bar
is maximal at the resonance (Fig. 1.5d), which means that the metamaterial no longer
prevents propagation of A0 Lamb waves in the plate.
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Figure 1.5 – Impedance and mechanical coupling of a single rod attached to the plate.
(a) Instrumentation of a single rod for longitudinal (black arrow) and flexural (red ar-
row) motion. (b) Spectrum motion of a single rod. the out-of-plan motion is shown in
black, and the in-plan motion in red. (c) Driving point impedance calculation at the
base of a single rod attached to the plate, when the rod displacement is limited to lon-
gitudinal (vertical) motion. (d-f) Bloch-waves polarization obtained from COMSOL
simulation for a single rod attached to a plate, and extracted at different frequencies
close to the compressional or flexural resonances.
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Figure 1.6 – Radiated field from the source inside the metamaterial (black square)
together with where the energy averaging is performed (blue, red circles). (b) The
averaged energy inside the metamaterial region (blue), and the averaged energy trans-
mitted outside the metamaterial region (red).

In a second step, the piezo source is placed at the center of the metamaterial, to
better understand and characterize the wave propagation in the frequency bandgap
(Fig. 1.6a). As in Fig. 1.1 for a source outside the metamaterial, the average spectral
intensity is computed over the whole frequency bandwidth for the source inside (Fig.
1.6b). In the stopbands, the spectral intensity is now higher inside the metamaterial.
Note also the presence of spectral peaks in the stopbands that correspond to the flexural
resonances of the rods, the importance of which in the complete description of the
plate-plus-rod system will be discussed in Section 1.4.

In Fig. 1.7, the field pattern is plotted at frequency f = 6400 Hz (inside the stop-
band, but distant from flexural resonance) when the source is located either outside or
inside the metamaterial. For the source located outside the metamaterial (Fig. 1.7a),
the spatially uniform speckle pattern carries the footprint of the wavefield reverbera-
tion in the finite-size plate, and as expected, no field penetrates inside the metamate-
rial.

This confirms the isotropic behavior of the metamaterial with a random distribution
of rods at the subwavelength scale. When the source is located inside the metamaterial
(Fig. 1.7b), the wavefield intensity is trapped around the source position in r0 as an
evanescent wave, and as confirmed from the spectral intensity in Fig. 1.6b, no energy
escapes from the metamaterial. A new experiment was performed with a finer spatial
sampling, as in Fig. 1.7(a, b) (∆x = ∆y = 8 mm in Fig. 1.7(a, b); ∆x = ∆y = 4 mm
in Fig. 1.7c) on a zone restricted to the metamaterial area (Fig. 1.7c).
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Figure 1.7 – Spatial representation of the Fourier transform (real part) of the wavefield
at f = 6400 Hz. The spatial sampling in the x and y directions is 8 mm, and the source
is located outside the metamaterial (black square). (b) As for (a), with the source
inside the metamaterial. (c) New experiment restricted to the metamaterial region (red
dashed square in (b)) with a source at the same position and a spatial sampling in the
x and y directions of 4 mm. The source behaves as a monopole in the stopband.

In FIg. 1.4c, the real part of the wavefield is plotted as a function of the distance
to the source in r0 at frequency f = 6400 Hz. In the absence of reverberation, this
function is modeled as the two-dimensional Green’s function for the plate, as calcu-
lated previously (Eq. (1.4)), with dr =| −→r − −→r 0 |. As evanescent waves dominate
the wavefield around the source, we now have k̃eff l ∼ 1, which means that the atten-
uation length inside the metamaterial is larger than the wavelength of the propagating
waves. In practice, Williams et al. [WIL 15] predicted from their theoretical ap-
proach that k̃eff =| <(keff) |=| =(keff ) | in the stopband, which is confirmed by
our experimental results obtained with a source inside the metamaterial (Fig. 1.4b).
Note, however, that the presence of flexural frequencies disrupts the match of the ex-
perimental wavenumber results for k̃eff with the theoretical approach limited to A0

Lamb waves interacting with compressional resonances.

1.4. The role played by flexural resonances of the rods

As the main physical properties of the locally resonant metamaterial have been
explained from the coupling of the vertically polarized A0 waves and compressional
resonances in the rod, what might be the role of the flexural resonances in the com-
plete description of the plate-plus-rod complex wave system? To define this, the same
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Figure 1.8 – Influence of plate stiffness on the coupling between the rods and the plate
at flexural resonances. (a) Dispersion curve obtained experimentally with h = 6-mm-
wide plate. (b) As for (a), with an h = 2-mm-wide plate on a restricted part of the
frequency spectrum (red dashed square in (a)). For the thinner plate, the plate-plus-
rod system shows a stronger interaction with the flexural resonances of the rods, inside
and outside the frequency bandgaps.

experiment was performed with a plate of width h = 2 mm (instead of h = 6 mm previ-
ously), with a finite bandwidth approach limited to the first bandgap between 0.5 kHz
and 5 kHz (Fig. 1.8). As the plate stiffness varies as h3, the wavefield on the 2-mm
plate is expected to be more sensitive to bending motions induced by the vertical rods
on the plate [RUP 15, ROU ]. This effect is clearly observed for the dispersion curve
k̃eff measured inside the forest of rods attached to this plate with lower stiffness (Fig.
1.8b). Sub-bending and sub-anti-bending branches are observed in the previously de-
fined passbands (<2 kHz,>4 kHz) at each flexural resonance of the rod, which means
that the flexural motion of the rods can no longer be omitted from the interpretation of
the dispersion curve. In a similar way, we also observe that flexural resonances lead to
transmission bands inside the main bandgap, which means that waves can both pene-
trate and escape from the metamaterial region using the coupled in-plane/out-of-plane
bending motion induced at the points where the rods are attached to the plate (Fig.
1.5d).

These two effects are illustrated for the experimental results given in Figs. 1.9
and 1.10. The wavefield at frequency f = 6700 Hz inside one stopband is shown
in Fig. 1.9(a, b) for two separate experiments with point-like sources located inside
the metamaterial. In Fig. 1.9b, the source is located at the same position as in Fig.
1.7c. Compared to Fig. 1.7c, where only local evanescent waves were observed,
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Figure 1.9 – Spatial representation of the Fourier transform (real part) of the wavefield
at f = 6700 Hz. (a) The wavefield pattern shows energy leakage in a stopband through
one flexural resonance. The source is located inside the metamaterial (black square)
and the spatial sampling in the x and y directions is 8 mm. (b) New experiment
restricted to the metamaterial region (red dashed square in (b)) with better spatial
sampling (4 mm). The source behaves as a dipole at the flexural resonance of the
rods.

the presence of a flexural resonance frequency of the rods at f = 6700 Hz (see Fig.
1.5b) completely modifies the wavefield pattern. First, the wavefield is no longer
trapped inside the metamaterial, and we observe some energy leakage outside the
metamaterial, as expected from the averaged spectral density shown in Fig. 1.6b.
Secondly, the wavefield around the source behaves as a dipole instead of a monople, as
previously observed for the bandgap only 300 Hz away (Fig. 1.7(b, c)). This dipolar
pattern is in agreement with the flexural deformation of the rods that is excited by
evanescent waves emitted by the source inside the metamaterial that favor a bending
motion of the plate (Fig. 1.5d).

No interpretation of the shape of the dipole can be given at this stage, as this proba-
bly depends on the local (but random) organization of the rods around the local source.
Note that this dipolar pattern can be observed at each flexural resonance frequency of
the rods inside the stopband. In other words, since the out-of-plane A0 type mode is
forbidden inside the metamaterial, the low-amplitude flexural waves locally excited
by evanescent waves at the rod/ plate interface can now be observed with an obvious
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Figure 1.10 – Spatial representation of the Fourier transform (real part) of the wave-
field at f = 6125 Hz. The wavefield pattern demonstrates energy leakage at the edge
of a stopband at f = 6125 Hz for a source located either outside (a) or inside (b)
the metamaterial. Note that the localized mode shape inside the metamaterial (black
square) is independent of the source location.

propagation from rod to rod that finally results in a leakage outside the metamaterial
region.

A similar effect is shown in Fig. 1.10. The source is either located inside or
outside the metamaterial (as in Fig. 1.7), and we choose to display the wavefield
at f = 6125 Hz, which corresponds to the start of the stopband (expected at f0 =
6190 Hz according to the theoretical prediction of Williams et al. [WIL 15]). The
wavefield intensity should be very low at this frequency, as attenuation dominates in
this frequency band (Fig. 1.4b) and the plate behaves as if it is clamped by the rod
anti-resonance (Fig. 1.5e). However, as there is one flexural resonance frequency of
the rods nearby (Fig. 1.5b), some of the energy still penetrates into the metamaterial
and traverses it from one side to the other. As in Fig. 1.9, the energy flux into the
metamaterial appears to be transported from rod to rod through evanescent waves
generated at the rod/ plate interface. Note, however, that these trapped waves are
not observed around f = 2050 Hz at the start of the first stopband, where there is no
flexural resonance frequency.

When the source is located inside the metamaterial, exactly the same field pattern
is measured (Fig. 1.10b), which confirms that this localized mode can exist indepen-
dent of the source excitation. In the past, similar localized modes have been observed



Locally resonant metamaterials for plate waves 27

for microwaves scattered by dense and random distributions of local dielectric scat-
terers [MOR 07, LAU 07]. These results appear to constitute the unambiguous signa-
ture of the existence of strongly localized modes in two-dimensional locally resonant
metamaterials.

Finally, in Fig. 1.11, we investigate the time-domain effects related to the differ-
ent quality factors of the flexural and compressional resonances of the rods. As can be
seen in Fig. 1.11b (green), compressional resonances have lowQ-factors, which mean
that they re-inject the energy that they capture on short time scales. Indeed, compres-
sional resonances correspond to a vertical velocity in the rod that couples easily with
the vertically polarized A0 Lamb mode in the plate. On the contrary, flexural reso-
nances show high Q-factors (Fig. 1.11c, green), which means that flexural vibrations
are trapped in the rod for longer times before this energy is fully radiated back into
the plate. Time-frequency analysis of the signals recorded inside the metamaterial
confirms these results. The spectrogram in Fig. 1.11a shows, for example, that at late
recording times, there is still higher wavefield intensity around flexural resonances.
Moreover, when the dispersion curve is calculated for a finite duration time window
in the early part of the recordings, we retrieve the dispersion curve associated with
compressional resonances, as described in Fig. 1.4a. However, when the dispersion
curve is computed from the same time window shifted to a later reverberation time,
the role of the flexural resonances becomes dominant, in agreement with the theoreti-
cal predictions from Colquitt et al. [COL 17] for a full-elastic plate-plus-rods system
(Fig. 1.5(b, c), blue and red dotted lines).

This frequency-time analysis helps to separate the effects due to compressional
resonances from those due to flexural ones. For example, around f = 6125 Hz, the
energy leakage inside the metamaterial (Fig. 1.10a) mostly appears after 100 ms of
propagation, which represents the time needed to load the high quality factor of the
flexural resonance. On the other hand, the monopole created by the source inside
the metamaterial at around 6400 Hz (Fig. 1.7b) is instantaneous, and so it should be
associated with the low quality factor compressional resonance.

1.5. Conclusion

In this chapter, we have experimentally revisited the multimodal interactions of an
aluminum beam ’forest’ glued on a thin elastic plate. This multi-resonant medium is
a laboratory scale analog of a real forest, which can behave as a seismic metamaterial.
For both systems, the resonant cell supports compressional or flexural resonant modes,
which interact differently on the wave substrate. Studying the laboratory system gives
some clues to the mechanical signature of such a system.

For longitudinal resonances, the driving point impedance of a single rod dictates
the homogenized behavior of the aluminum forest. The bandgap and the highly dis-
persive curve inside the passband are the two main features of this metasurface. Using
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Figure 1.11 – Frequency-time dependence showing the rod resonance contributions to
the wavefield. (a) Spectrogram of a signal recorded inside the metamaterial region.
(b) Spatial Fourier transform of the wavefield at an early time of propagation (blue
colored time window 1 in (a)). The blue dotted line is the predicted dispersion rela-
tion for the out-of-plane polarization. (c) Spatial Fourier transform of the wavefield
for the late reverberation time (red colored time window 2 in (a)). The red dotted line
is the predicted dispersion relation for the in-plane polarization. The associated com-
pressional or flexural motions of the rods are shown in green and are superimposed on
the selected time windows, together with relevant examples of modal deformation.

different source locations inside and outside the rod forest helps to quantify these ef-
fects. On top of this behavior, the high quality factor flexural resonances add some
disturbances, like bandgap leakage with outlandish spatial distribution of the energy.

Finally, the time dependence of the system is studied through short window analy-
sis of the reverberating coda. Directly related to the quality factor of each resonance,
we have shown that the hybridization of the flexural waves inside the metamaterial
evolve over space and time.
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