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We study here a mesoscopic metasurface made of a randomly distributed set of long vertical metallic rods
attached to a thin elastic plate. The A0 Lamb wave propagation is strongly affected by the local change in
apparent stiffness of the plate induced by the low-quality factor resonance of the rods. At the resonance, the
plate plus rods system is allowed to move freely, and plate waves can penetrate into the metamaterial. At
the anti-resonance, the plate behaves in terms of waves as if it was clamped by the rods in the metamaterial
region, which induces large frequency band gaps. Between the resonant and anti-resonant frequencies, the
continuous change in effective rigidity results in a continuous change in reflectivity. In the present study, we
aim at the measuring of the corresponding complex impedance of the metasurface in terms of amplitude and
phase. Experimental data are presented to estimate the effective impedance of a locally resonant metasurface,
in agreement with theoretical prediction and numerical simulation.

Over the last two decades, metamaterials have shown
huge potential for manipulating waves in many areas of
physics1–4. These applications relate to electromagnetic,
mechanical and acoustic waves5–7. In general, the prop-
erties of these metamaterials derive from the spatial ar-
rangement of their unitary components, whether they are
ordered or not, and the nature of these components, in
terms of whether they are resonant or not8,9. For acoustic
waves, two main categories of metamaterials are classi-
cally discussed. On the one hand, the physical proper-
ties of phononic crystals can be well described by Bragg
scattering. Bandgaps are observed due to their periodic
structure and the appropriate relationship between the
wavelength and the distance between neighboring scat-
terers. On the other hand, disordered and locally res-
onant metamaterials10–20 also show bandgap structures.
However, they no longer depend on the spatial arrange-
ment of their resonators, but on the local coupling be-
tween these resonators that leads to hybridization effects
around their resonance frequency21,22.

In acoustics, locally resonant metamaterials usually
show considerable absorption loss23, which limits their
practical realization in three-dimensional (3D) systems.
Moving from 3D to 2D configurations, elongated res-
onators can be used in one dimension with propagat-
ing waves in the orthogonal plane to the resonator axis.
This can help to confine the energy, and thus to over-
come part of the attenuation due to wave diffraction.
These metamaterials are also defined as a metasurface in
optics24, acoustics25 and mechanics26. When the 2D sup-
port medium is a thin plate, these elastic metasurfaces27

raise new questions in terms of elastic wave interactions
in a 2D+1D physical system, where the two dimensions
refer to wave propagation along the plate surface, and
the one dimension corresponds to the vibration of the
elongated resonators attached to it.
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The main feature of a locally resonant elastic metasur-
face is the emergence of wide band gaps at frequencies
that are much lower than for equivalent phononic crys-
tals. Some anisotropy properties have also been reported
for such metasurfaces: the design of gradient index lenses
might open the route to practical cloaking applications,
as they allow for the control of wave bending28,29.

Another need for cloaking and lensing applications is
a perfect match between the plate and the metasurface
impedances. In practice, the impedance of a mechan-
ical system describes the way it can transmit, radiate,
or absorb elastic waves. Therefore, the measurement of
the metasurface impedance requires more effort than the
classical extraction of its dispersion curve30–32. In par-
ticular, the measurement of both the propagating and
attenuating parts of the effective wavenumber are manda-
tory for the impedance calculation. The metasurface
impedance is controlled by both the local rigidity and
the mass of the plate, which can be affected by adding
or removing some of the resonators attached to it.

The goal of the present study is to determine the ef-
fective impedance from both the mass and stiffness vari-
ations associated to the coupled resonators in the meta-
material region. Throughout this paper, we mainly focus
on two different experimental methods to extract the ef-
fective impedance of the metasurface, with consideration
also of the use of numerical simulations and theoretical
predictions.

To create a locally resonant metasurface, Rupin et al.
(2014) used thin long metallic rods that were glued to an
aluminum plate at the subwavelength scale with a ran-
dom spatial distribution9. The use of rods glued to a
thin plate has highlighted the symmetric and antisym-
metric modal contributions of the guided waves in the
plate. As will be shown later, this induces different kinds
of coupling with the resonators that depend on the wave
polarization21.

In the specific case of thin metallic plates excited at
low frequency (i.e., below 10 kHz), the length of the res-
onators needs to be adjusted to obtain resonances in this
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frequency range. The present study is developed with a
similar plate-plus-rods mechanical system that is excited
by low-frequency Lamb waves.

This paper is organized as follows. In the following sec-
tion, the experimental set-up is described, along with the
metasurface design and the measurement protocol. The
next section deals with two experimental methods to ex-
tract the effective impedance of the metasurface. Finally,
a frequency domain simulation is presented to confirm
the impedance measurements, which provides further in-
sight into the physics of such locally resonant metamate-
rials.

Experimental configuration of the plate-plus-rods
metamaterial

One hundred 61-cm-long, 6.35-mm-diameter, cylindri-
cal aluminum rods are randomly glued over a 20 cm x 20
cm square area (which defines the metasurface) on a 6-
mm-thick, 1.5 m x 2 m aluminum plate. The typical area
occupied by each single rod is a 2 cm x 2 cm square. Five
piezoelectric sources are used for wave generation, which
are located far from the cluster of beams. The sequential
transmission of an 8-s-long broadband chirp (from 1-8
kHz) from each source converts a normal force into elas-
tic waves in the plate. The signals are then recorded at
different points of the plate surface using an out-of-plane
laser vibrometer that is attached to a rotating/ translat-
ing robot arm. This provides a wide (a half-disk of 60
cm) and accurate scanning area, with a spatial grid size
of 4 mm. After pulse compression, the recorded signals
give access to a broadband impulse response with more
than 250 ms of reverberating coda due to the boundary
reflections. This corresponds to an average of 125 m of
propagation inside the plate.

The experimental configuration is depicted in Fig. 1.
As detailed previously9, only two modes propagate in
the free plate in the frequency band of interest. With
an out-of-plane displacement, the A0 mode is vertically
polarized, whereas the S0 mode is horizontally polarized
with an in-plane displacement33. For symmetry reasons
associated to the source excitation, the dominant waves
involved in this experiment are the A0 Lamb mode. At
4 kHz, the wavelength is 12.5 cm for the free plate, and
the wave speed is around 500 m/s.

Extracting the effective impedance of the beam cluster

In recent years, an analytical approach was devel-
oped to describe the physical properties of locally res-
onant metamaterials for Lamb waves in a plate-plus-rods
system34. The metasurface consists of a linear periodic
array of long rods that are attached to the plate that
forms the substrate in which A0 Lamb waves are excited.
Using a 1D formulation, the wave propagation problem
is rigorously solved by the introduction of a scattering

FIG. 1. Experimental set-up at the laboratory scale. The
metamaterial (a) is made of 100 vertical aluminum rods that
are glued to the underside of a plate of the same material ((b),
black square). The particle velocity is measured using an out-
of-plane laser Doppler velocimeter (c) that is connected to a
PC-controlled (e) motorized robot arm (d). The recorded sig-
nal (f) is strongly dispersed due to the weak intrinsic attenua-
tion of the plate. Using the late part of the reverberated coda
(g) and a set of a few sources (h), homogeneous focal spots
are reconstructed from correlations inside (i) and outside (j)
the beam cluster.

matrix for a single rod attached to the plate, with rig-
orous boundary conditions at the rod/ plate interface,
and including both evanescent and propagating waves in
the plate. Note, however, that the scattering matrix ne-
glects the in-plane wavefield component that is associ-
ated to the flexural resonances of the rods. To predict
the transmission through the linear array of rods, the
scattering matrix is used to set up an eigenvalue problem,
along with the boundary conditions between the adjacent
unit cells. The eigenvalues are determined precisely, and
an analytical formulation can be found for the effective
wavenumber keff within the long-wavelength approxima-
tion:

keff = kp

[
Mb

M

tan(kbLb)

kbLb
+ 1

]1/4
= k<(ω)+ik=(ω) (1)

where kp is the free-plate wavenumber, Mb is the total
beam mass, Lb is the beam length, kb is the wavenumber
associated with the compressional motion of the beam,
and M is the mass of the plate area below the beam.

Here, we are interested in the effective impedance of
the metasurface, rather than its band structure. In prac-
tice, the impedance of a mechanical system describes the
amplitude and phase of the local stress due to a given
particle velocity value for a homogeneous medium, and
it includes both elastic and viscous effects. As the ex-
periment involves a piezoelectric disk that generates a
normal force on the plate and a laser Doppler vibrome-
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ter that is sensitive to the normal particle velocity of the
plate, we are looking at the following quantity:

Z =
Fz

vz
(2)

The out of plane velocity generated by a normal force
Fz and measured at any point distant r from the source
on an infinite plate is given by35–37:

vpz(r, ω) =
ωFz

8Dk2p

{
H

(2)
0 (kpr)− i

2

π
K0(kpr)

}
(3)

where H
(2)
0 is the Hankel function of the second kind,

and K0 is the hyperbolic Bessel function. From Eqs. (2)
and (3), the impedance is obtained by setting r to zero:

Z = 8
√
Dm =

8Dk2p
ω

(4)

where D is the plate rigidity, ω is the pulsation, m
is the mass per unit area, and kp are the A0 wavenum-
bers. In the metamaterial region, far from the flexural
resonances, the polarization of the A0 Lamb wave is con-
served, and so the same impedance definition can be ap-
plied with effective parameters, rather than the free-plate
parameters.

Zeff

Zp
=
k2eff
k2p

(5)

The measurement of both the effective wavenumber
keff and the free-plate wavenumber kp is then sufficient
for impedance estimation of the metasurface. To do so,
we calculate the ensemble-averaged two-point correlation
function C(ω, dr) at the pulsation ω, and for all of the
possible receiving points separated by an absolute dis-
tance dr inside and outside the metamaterial region.

C(ω, dr) =
〈ΨT (ω, r)Ψ∗T (ω, r + dr)〉

〈| ΨT (ω, r) |2〉
(6)

where ΨT (ω, r) is the field measured from the laser
vibrometer in r and at frequency ω for a finite-duration
recorded window of duration ∆T , starting at time T . We
then take advantage of the equipartition of the spatial
wavefield inside the plate, which was designed with an
ergodic shape20, by averaging the two-point correlation
over all of the piezo sources, time windows T , and vector
positions r and r+dr. In practice, we choose ∆T = 10
ms, which is small compared to the total reverberation
time of the cavity, and T expands from 10 ms (for the
wave mixing to be sufficient) to 250 ms (where ambient
noise starts to dominate). The real part of the two-point

FIG. 2. (a) Real part of the averaged two-point correlation
function (normalized) measured at 5 kHz for all of the receiver
pairs located inside the metamaterial region (blue). The mod-
eled plate Greens function (Eq. (3)) is in red. (b, c) Aver-
aged two-point correlation versus frequency measured inside
the metamaterial (b) and outside the metamaterial (c). The
black line in (b) corresponds to the averaged intensity versus
frequency measured inside the metamaterial.

correlation function C(ω, dr) is shown in Figure 2a at
frequency f = 5000 Hz, and in Figure 2b, c for all of
the frequencies inside and outside the metamaterial. In
Figure 2a, the normalization coefficient calculated at the
denominator of Eq. (6) corresponds to the averaged in-
tensity measured from all of the receiving points inside
the metamaterial (black line). As expected, passbands
(where the wavefield propagates inside the metamate-
rial) and stopbands (where almost no energy penetrates
into the metamaterial) correspond to frequency bands
with higher and lower averaged intensities. In the pass-
band, the two-point correlation function is modeled as
the frequency-normalized 2D Greens function for an infi-
nite plate vpz(r, ω), with kp −→ keff , defined as a complex
number38,39. The modeled results are shown in Figure
3a, with the real and imaginary parts of the wavenum-
ber in blue and red, respectively. In the stopband, the
two-point correlation function is modeled with an effec-
tive wavenumber with equal real and imaginary parts, as
in Williams et al. (2015):

keff = (±1 + i)
kp√

2

∣∣∣∣Mb

M

tan(kbLb)

kbLb
+ 1

∣∣∣∣1/4 (7)

In both the passband and the stopband, the theory is well
retrieved. Note, however, an increase in the attenuation
at the end of the passband. As the effective wavenumber
strongly increases here, the wavelength becomes of the
order of the average distance between neighboring rods,



4

which results in scattering attenuation that can no longer
be neglected. This scattering attenuation is not taken
into account in the effective medium approximation.

The real and imaginary parts of keff are then used to
calculate the impedance of the metasurface through the
impedance ratio computed inside and outside the meta-
material, as shown in Figure 3b. The experimental re-
sults are in agreement with the theory, which is plotted
as a solid line, that predicts purely imaginary impedance
(equivalent to a mass) inside the band gap, and purely
real impedance (equivalent to a spring) in the passband.

We use a second approach to test the theoretical pre-
diction of the metasurface impedance only in the pass-
band. In a shorter time than the reverberating time of
the plate, and far away from the plate boundary, the
average elastic strain energy (U0) is equally distributed,
because of the equipartition of the wavefield40,41. We
also assume that at the source location a normal force
generates only normal velocity motion (i.e., no angular
velocity)35–37. This means that the strain energy U0 at
the source location is only proportional to the product
of the normal force Fz with the induced normal displace-
ment uz (also equal to −v∗z/iω).

Then, starting from the definition of the mechanical
impedance (Eq. (2)), the relative impedance between
the free plate and the metasurface is accessible through
the particle velocity amplitude only, and is thus directly
measurable with the laser velocimeter:

Z(ω, r) =
Fz(ω)

vz(ω)
=
Fzv

∗
z

vzv∗z
=
−2iωU0

|vz|2
(8)

and so:

Zeff

Zp
=
|v(m)

z |2

|v(p)z |2
(9)

For averaging purposes, an ensemble of 100 points is
considered, with 50 points outside the metasurface, and
50 inside. For each point, a time reversal focal spot is
computed (Fig. 1i, j) by considering the long-term aver-
aged cross-correlation of the ambient reverberating sig-
nal in the plate with neighboring points, and so simu-
lating the virtual sources with amplitude v2z . We also
use the five different sources in the averaging process.
Then, the averaged focal spot amplitudes inside and out-
side the metasurface are compared. The amplitude ratio
corresponds to the impedance ratio, which is plotted in
purple and yellow in Figure 3b. The theoretical trend
for the metamaterial impedance is well retrieved in the
passband. In the stopband, however, the equipartition
condition is no longer verified due to strong attenuation,
which means that the focal spot amplitude depends on
each point position within the metamaterial.

The two approaches to compute the impedance ratio
are different in nature: the first is based on the wavenum-
ber extraction from the two-point correlation function,

FIG. 3. (a) Metamaterial band structure. The blue and red
curves (yellow and purple) are computed from the averaged
two-point correlation function using Eq. (3) for the real and
imaginary parts of the effective wavenumber, respectively, in-
side (outside) the metamaterial region. The black solid line
shows the real part of the analytical effective wavenumber
from Williams et al. (2015). The A0 dispersion curve is plot-
ted as a dashed line. (b) Impedance ratio obtained through
different methods. Purple and yellow, from the time reversal
focal spot amplitude (in the passband only); blue and red,
from the two-point correlation method and using Eq. (3);
black and grey, theoretical values from Williams et al. (2015),
as the effective medium formulation and using Eq. (9). The
impedance value of the free plate is plotted as the dashed
line. The background colors highlight the bandwidth of the
stopband (red) and passband (blue).

and the second is related to the amplitude of the time-
reversal focal spot. In both cases, the averaging process
is performed on the long-duration reverberation inside
the plate and the discrete number of piezo sources. Of
course, time-reversal and cross-correlation are equivalent
processes. However, the wavenumber extraction depends
on the phase measurement between distant sensors when
the time-reversal focal spot is a local measurement of the
wavefield intensity. The agreement between the two ap-
proaches in the computation of the impedance shows that
both amplitude and phase carry the signature of the radi-
ated wavefield from the metamaterial when equipartition
is reached in the free plate.

The impedance mismatch at the interface between the
free plate and the metasurface should generate transmit-
ted and reflected waves. In a highly reverberant system,
such as in the present experimental configuration, it is
challenging to separate scattered waves at the metama-
terial/ free-plate interface from reflected waves due to the
plate boundaries. In the next section, a simulation box
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FIG. 4. Metamaterial simulation in two dimensions. (a) Sim-
ulation box: a random set of 100 beams attached to a shell
component with absorbing boundaries. (b) Response at 6400
Hz, inside the stopband. (c) Response at 4200 Hz, inside
the passband. The black square represents the metamate-
rial region. In the two left panels, the arrows indicate the
incident-wave direction.

is designed with absorbing boundaries solely to focus on
the transmitted/ reflected waves from the metasurface,
as if the free plate was infinite.

Reflection and transmission coefficients: a numerical
approach

We use a frequency domain simulation with the COM-
SOL software for modeling the metamaterial compo-
nents, which are based on the actual laboratory geom-
etry. Using an incident plane wave as a source excitation
(black arrows in Fig. 4b and c, left panels), the simula-
tion results are shown in Figure 4 at the two frequencies,
inside the stopband (6400 Hz) and the passband (4200
Hz). The wavefield is filtered between the incident and
reflected waves with a spatial Fourier transform. The to-
tal reflection inside the stopband and the transparency
of the medium for this specific frequency inside the pass-
band are clearly visible. This simulation provides appre-
ciation of some of the wave-propagation effects, but it
cannot be quantitative in terms of the reflection coeffi-
cient measurements. Indeed, the finite size of the meta-
material adds undesired diffracted waves at the edges of
the metamaterial region. Moreover, the randomness of
the rod distribution adds some roughness effects at the
metasurface interface.

To obtain a quantitative estimation of the reflection
coefficient over the whole bandwidth, we choose a differ-
ent approach. For plane-wave propagation, the reflection

coefficient at any interface is the complex amplitude ratio
between a reflected and an incident plane wave, which is
also defined from the effective impedance of the two me-
dia for waves traveling from outside to inside the meta-
surface:

r =
Ar

Ai
=
Zeff − Zp

Zeff + Zp
=
Zr − 1

Zr + 1
(10)

where Zr is the relative value (Zeff/Zp) obtained ear-
lier, and Ar and Ai are the complex amplitudes of the
reflected and incident waves, respectively. Based on the
Williams et al. (2015) theoretical approach, the compu-
tation of the theoretical reflection coefficient is straight-
forward, starting with the analytical expression of Zr

(Eq. (9)).
The plate is now modeled by exploiting a 1D symmetry

with a 2-m-long (x direction), 6-mm-thick (z direction),
and 2-cm-wide (y direction) beam with periodic bound-
ary conditions along the y direction. The periodic condi-
tions help to simulate an infinite plane wave and to reduce
the computational cost by limiting the metamaterial to
only one line of beams. At the extremities of the plate
along the x direction, two absorbing regions are added, to
remove backward reflections. Within the simulation box,
the only impedance mismatch is the interface between
the free plate and the metamaterial region. The scheme
of the simulation is shown in Figure 5a. Note that on the
metamaterial side of the simulation box (large x), the
absorbing region is also covered with the periodic meta-
material. Indeed, without this, an impedance mismatch
between the metamaterial region and the absorbing layer
would be created.

The simulated wavefield is analyzed through spatial
Fourier transform. In the metamaterial region, the typi-
cal propagative branches and band gaps can be retrieved
(Fig. 5c). In the ’free-plate’ region, the spatial Fourier
transform reveals two main peaks, one for the incident
waves (positive wavenumber) and one for the reflected
waves (negative wavenumber). The amplitude ratio of
these two peaks provides an estimation of the modulus
of the reflection coefficient R. The simulation results and
the theoretical values of R are reported in Figure 5b (blue
and red, respectively). Once again, the Williams et al.
(2015) theory for the effective wavenumber provides a
good description of the metamaterial mechanical behav-
ior. Inside the passband, the modulus of ’R’ varies from
0 to 1. Inside the band-gap, however, the modulus is con-
stant and equal to 1; this corresponds to total reflection
of the wavefield, which only allows evanescent waves to
penetrate into the metasurface. Moreover, the reflected
waves come with a frequency-dependent phase shift (not
analyzed here).

As previously observed with experimental impedance
measurements, simulation results show sharp perturba-
tions at flexural resonances, compared to the Williams et
al. (2015) theoretical approach where in-plane wavefield
components are not considered. Each flexural resonance
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FIG. 5. Metamaterial simulation in one dimension. (a) Fre-
quency domain simulation with lateral periodic conditions
and absorbing layers at the boundaries of the medium. In-
set: Metamaterial dimensions. (b) Simulation result. Blue,
reflection coefficient at the beam interface calculated from the
spatial Fourier transform in the free plate region; red, theo-
retical results obtained with Eqs. (9) and (1); green, lateral
motion recorded at the top of the first beam. (c) Band struc-
ture derived from the spatial Fourier analysis of the wavefield
inside the metamaterial region.

creates a hybrid branch in the passband and wave leak-
age inside the stopband. In Figure 5b, the motion of the
first beam along the x direction is shown in green. As the
boundary condition at the base of each resonator evolves
from clamped to free depending on frequency, we high-
light here a multi-modal interaction for plate waves with
different polarization.

Conclusions

We have studied wave propagation inside a metasur-
face made of 100 vertical rods glued onto a thin elastic
plate. Our goal was to measure the effective impedance
for the beam cluster, considering both the free-plate an-
alytical description and a recent homogenized theory for
dense locally resonant metasurfaces. This theoretical ap-
proach was compared with two experimental estimations
of the impedance, based on the phase and amplitude
characteristics of the wavefield inside and outside the
metasurface. Finally, through numerical simulations per-
formed with the same experimental configuration, the re-
flection coefficient is obtain for A0 Lamb waves traveling
from a free-plate region into the metasurface. These re-
sults also highlight the coupling between the orthogonal
polarizations of the rod flexural resonances and the A0

Lamb waves.
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