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ABSTRACT:
An experimental comparison is reported here between two equivalent resonant subwavelength metasurfaces made of

long aluminum beams glued closely together on a thin aluminum plate. One metasurface has a random distribution

of the resonator beams, and the other has a regular square lattice of pitch 1.5 cm. The random lattice shows the

“resonant” behavior of a typical metasurface, with a wide full bandgap for the first A0 Lamb mode. Instead, the

regular square lattice combines Fano resonance with Bragg scattering at the edges of the passband, thus creating

anisotropy and a pseudo bandgap. Comparisons with numerical simulations are performed, with good agreement

with the experimental data. The multimodal response of the beams is also responsible for double negativity in a

narrow frequency band, and the event of a pseudo bandgap around this same flexural resonance. In addition, the

scattering regimes for both the random and regular metasurfaces are characterized using coherent and incoherent

signal analysis. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005060

(Received 31 December 2020; revised 24 March 2021; accepted 3 May 2021; published online 27 May 2021)

[Editor: Olga Umnova] Pages: 3645–3653

I. INTRODUCTION

Metamaterials are artificially structured media that

show extreme mesoscopic properties for waves that travel

through them. Since the early 2000s, metamaterials have

emerged widely throughout the numerous areas of physics

where electromagnetic, elastic, and acoustic waves are stud-

ied. They can provide the possibility to control the wave

flow in an unprecedented way, with important consequences

in material sciences and engineering.

In terms of the ease of handling centimetric waves in the

laboratory (Yves et al., 2018; Yves et al., 2020; Lott et al.,
2019b), metamaterials have other aspects of interest in

experimental physics. These can reproduce the complexities

of wave–matter interactions at a human scale, which usually

requires heavily controlled experimental set-ups (Juffmann

et al., 2013). Here, the strategy is somehow different: artifi-

cial objects can be engineered that are organized on a scale

smaller than the operating wavelength, and that interact with

waves to induce new “mesoscopic” observations.

Among the different classes of metamaterials, there are

those in the which their physics is driven by periodic struc-

tures that induce Bragg scattering, also known as crystal

phononics in acoustics, and crystal photonics in optics.

These can be distinguished from those where their physics is

controlled by the local resonance of their unit cell, which

induces hybridization phenomena. To summarize, typical

phononic/photonic crystals are spatially ordered at the

wavelength scale, when locally resonant metamaterials can

be spatially disordered, as long as there are enough

resonators within one wavelength; i.e., they are structured at

the subwavelength scale.

Two-dimensional (2D) periodic structures, or locally

resonant (metasurface) equivalent systems, have revolution-

ized the control of waves in recent years (Lauterbur, 1973;

Engheta and Ziolkowski, 2006; Cai and Shalaev, 2010). The

main physical properties of these structured media can be

directly derived from the complex dispersion relation kðwÞ
(Smith et al., 2004; Krushynska et al., 2017; Lott et al.,
2019a). Such properties include, for example, opening of

band gaps (Capolino, 2017; Colombi et al., 2014), slow-

wave frequency bands (Pendry et al., 2006; Pendry, 2000;

Leonhardt, 2006; Pomot et al., 2020; Page, 2016), and spa-

tial filtering (Veselago, 1967; Capolino, 2017), among

others. This rich but sometimes hard to interpret information

is of crucial relevance for the design of metamaterial-based

devices. The real part of the wavenumber kðwÞ is associated

with the propagative (dispersive) properties and drives the

spatial resolution characteristics of the metamaterial, while

its imaginary part is related to attenuation.

In practice, 2D crystals based on Bragg interferences

have the major drawback of a spatial period that is compa-

rable to the wavelength, which makes subwavelength reso-

lution difficult to achieve. Recent studies have thus tried to

combine resonance and the Bragg phenomena with the

study of wave responses of subwavelength periodic meta-

surfaces (2D metamaterials) made of resonant units

(Colombi et al., 2017). In particular, as in Bragg type 2D

crystals, multiple scattering and strong near-field coupling

have profound consequences in locally resonant metasurfa-

ces, despite their subwavelength scale (Yves et al., 2020;

Kaina et al., 2013).
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In contrast to acoustic and electromagnetic systems,

elasto-dynamic media such as metallic plates have the

advantage of supporting Lamb waves with different polari-

zation. This allows for mode conversion at the resonator–

plate attachment, which induces monopolar and dipolar

resonance effects. Among the possible resonant metasurface

designs for plate waves proposed in recent years (Baravelli

and Ruzzene, 2013; Miniaci et al., 2015; Lee et al., 2018;

Matlack et al., 2016, Galich et al., 2017; Tallarico et al.,
2017], those that provide resonant metasurfaces with supe-

rior characteristics and versatility of use propose a cluster of

long metallic beams (i.e., the resonators) attached to a

metallic plate (Pennec et al., 2008; Wu et al., 2011;

Achaoui et al., 2011; Colombi, 2016).

The first-order physics of this metasurface is well

described through a Fano-like resonance (Miroshnichenko

et al., 2010; Colquitt et al., 2017). A single beam attached to a

plate couples with the out-of-plane motion of the A0 Lamb

mode. This monopolar coupling is particularly strong at the

compressional anti-resonance of the beam. As for the metasur-

face discussed here, when the resonators are arranged as a sub-

wavelength cluster [i.e., with k (the wavelength of the plate

waves) much greater than the resonator spacing],

the resonance of each beam acts constructively to enlarge the

bandgap, until it approximates the resonance (half wave-

length) of the beam [Rupin et al., 2014; Colombi et al., 2017].

Thus, the resulting bandgap is broad, and it appears indepen-

dent of the random versus regular clusters of beams on the

metasurface. Note that, when the plate gets thinner, dipolar

coupling is also observed at the flexural resonances of the

beam, which can lead to localized states due to multi-wave

interactions at the beam–plate attachments (Lott et al., 2020).

In this paper, the experimental investigations involve

such locally resonant metasurfaces that are made of long

vertical beams attached to a thin plate. The complex disper-

sion relation and the frequency-dependent spatial wavefields

are compared for subwavelength clusters of resonators that

are random and regular. When approaching the bandgap, it

is demonstrated experimentally here that hybridization

effects associated with the Fano resonance tend to strongly

diminish the effective wavelength of the metasurface. In this

way, low-frequency Braag scattering, which induces strong

anisotropy effects, can appear with the periodic (regular)

arrangement of the beams.

This paper is structured as follows. First, the experi-

mental set-up and methodology are presented, as applied to

the recorded spatial–temporal data from which the disper-

sion relation kðxÞ for both the random and regular metasur-

faces is extracted. We discuss then the phase and amplitude

wavefield representations at a set of discrete frequencies that

illustrate the low-frequency Bragg scattering effects in the

regular configuration. The time-dependent scattered inten-

sity is compared at the source location for both the random

and regular metasurfaces, which allows our results to be

linked to a classical mesoscopic wave physics effect.

Finally, we also study the regular metasurface at the flexural

resonance of the beams, and we report the first experimental

evidence of anisotropy and double negativity behavior

around this dipolar resonance.

II. EXPERIMENTAL SET-UP

The study set-up is based on two metasurfaces that are

built on two separate thin aluminum plates (length, 2 m;

width, 1 m; thickness, 2 mm). The experimental scheme is

shown in Fig. 1. The plate has one round boundary shape to

break its natural symmetry. One random configuration [Fig.

1(a-1)] and one regular square array [Fig. 1(a-2)] of long

aluminum beams (length, 60 cm; diameter, 6 mm) that act as

resonators are glued vertically (bicomponent Araldite glue)

onto each plate surface. Both of these metasurfaces have the

same surface density of �0.5 beams/cm2. The frequency

bandwidth investigated (1–3 kHz) limits the plate waves to

the first symmetric and antisymmetric Lamb modes. Due to

the particularly thin plates, most of the energy inside this

frequency band propagates in an antisymmetric mode A0

that is characterized by out-of-plane polarization. At around

2.5 kHz, the A0 wavelength is 12 cm, with a wave speed of

300 m/s. The S0 is much faster at the same frequency, with a

wavelength of 2 m for a wave speed of 5000 m/s. The first

antisymmetric A0 Lamb wave mode is generated inside the

plate using two piezoelectric 12-mm-diameter disks (ABT-

456-RT), with a resonant frequency of around 10 kHz

outside the frequency band of the study. One of the piezo

sources is located at the center of the cluster of beams, and

the other is in the far-field of the metasurface area. A 3-s-

long electrical chirp signal is applied to the piezo source,

with a frequency ramp starting at 1 kHz and going up to

8 kHz. The wavefield is then recorded with a three-

component laser vibrometer (PSV-500–3D Xtra; Polytech),

and cross-correlated with the emitted signal, to provide a

500-ms highly reverberated impulse response with an 80 dB

signal-to-noise ratio for each component [Fig. 1(e)]. The

three heads of the laser vibrometer are mounted on a five-

axis motorized robot (KR 120 R3500K Prime) that allows

full three-dimensional (3D) measurements of the plate

þ beams wavefield from above [Fig. 1(b)] and below [Fig.

1(c)]. For the two metasurfaces (random and regular), three

scanning areas are defined, for which the wavefield is accu-

rately sampled due to the motion of the robot arm. The first

zone includes the plate in the metasurface region, on the

opposite side of the plate with regard to the cluster of beams.

The second zone is a free plate region that is distant from

the metasurface area, and the last zone is the top of the

beams. The final dataset gathers the exact position in the

robot repository and the three-component velocity field at

each of the scanned points for each metasurface (random

and regular). Due to the expected drop in velocity, the two

independent metasurface areas are spatially sampled with a

4-mm step grid, while the free plate surface is scanned with

an 8-mm step grid. The resonator motion is measured with

one point at the top of the beam. A control unit drives the

robot and the laser and generates and records the signals.

The noninvasive measurement with a scanning laser is essential
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for optimal wavefield analysis of the plate–beams system. Note,

however, that with 10 s acquisition per scanned point and two

different sources, the full dataset measurement took approxi-

mately 24 h for each of the two metasurfaces.

III. DATA ANALYSIS

For each metasurface, the dispersion curves are com-

puted from the estimation of the cross-spectral density

matrix (CSDM) and the correlation of the CSDM with a

model-based plane-wavefield with varying wave vector

amplitude and direction (Seydoux et al., 2017; Baggeroer

et al., 1988). First, at frequency f, the CSDM K(f) is esti-

mated as follows:

Kij fð Þ ¼ ~d f ; ~rið Þ~d f ; ~rj

� ��D E
; (1)

where ~d f ; ~rið Þ ¼ dðf ;~riÞ = dðf ;~riÞ
�� �� is the normalized Fourier

transform (keeping the phase only) of the out-of-plane wave-

field component measured from the laser vibrometer in~ri, for

a finite-duration recording window of duration dt, starting at

time T. * indicates the Hermitian transpose operation. We

take advantage of the equipartition of the spatial wavefield

inside the plate to perform a temporal ensemble average

[indicated by the <> signs in Eq. (1)] for the CSDM estima-

tion over the two piezo sources and the different time win-

dows T. In practice, we choose a starting time T that expands

from 50 ms (for the wave mixing to be sufficient) to 350 ms

(where the noise starts to dominate) for both sources,

dt ¼ 35 ms and an ensemble of 512 spatial receiving points

~ri chosen randomly inside the metasurface area.

Second, we proceed to the artificial isotropization of the

wavefield by normalization of the eigenvalues of the CSDM

(Seydoux et al., 2017). This method allows the direction of

space with the low intensity level to be balanced, which

greatly influences the quality of the CSDM estimation. This

step requires singular value decomposition of the CSDM at

each frequency. From the normalized singular values distri-

bution [k1;…; kn], the Shannon entropy (Seydoux et al.,
2017; Lott et al., 2020) is computed as

S ¼ �
X

ki log ki: (2)

This parameter is related to the number of degrees of freedom;

i.e., the number of modes that are encoded in the CSDM. The

idea here is to balance equally the intensity of each mode in the

CSDM estimation. The number of excited modes at each fre-

quency is estimated as the exponential of the entropy,

n ¼ eSd e: (3)

Then, the normalized CSDM ~Kðf Þ is computed from the n
first eigenvectors Vp of K fð Þ as

~K fð Þ ¼
Xn

p¼1

VpV�p : (4)

Finally, the dispersion curves are retrieved for both the ran-

dom and regular metasurfaces by matching the CSDM

FIG. 1. (Color online) Scheme of the experimental set-up. The metamaterial (a) is constituted of long aluminum beams glued to a thin (2-mm thick) alumi-

num plate. Two distributions for the beams are considered as, (a-1) a random distribution with an average distance between the beams of <a>¼ 1.5 cm, and

(a-2) a regular square lattice of pitch a¼1.5 cm that defines the unit cell of the metasurface. A three-component laser head (b) extracts the full wavefield at

the top of the beam and at the plate surface (c), resulting from two independent sources, inside and outside (d) the metasurface. (e) A typical recorded signal

at the plate surface (out-of-plane motion). The plate is highly reverberating, with 0.5 s of recorded coda.
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matrix ~Kðf Þ against the plane wave synthetic field T0 ¼ ei~k :~r

(with ~k defined as the wave vector, and~r as the spatial posi-

tion of the receivers) using a cross correlation operator. The

beamforming output is defined for each wave vector ampli-

tude and direction as

B ~k; f
� �

¼ T�0
~kð Þ ~K fð ÞT0

~kð Þþ
���

���: (5)

For the random arrangement of the beams, as all directions

are equivalent, we proceed to an azimuthal averaging and

report the results as a function of the wave vector amplitude

k only. For the regular configuration of the beams, the beam-

forming calculation is limited to inside the well-known irre-

ducible Brillouin zone defined on the wave vector plate

k ¼ ðkx; kyÞ by the three point coordinates: C ¼ 0; 0ð Þ; M
�

¼ p=a; p=að Þ; X ¼ ðp=a; 0Þg, where a is the pitch array of

the resonators. By browsing through the possible values of ~k
along the path C� X �M � C [see Fig. (1a-2)], B ~k; f

� �
is

computed for the overall considered frequency bandwidth.

Finally, B ~k; f
� �

is averaged over all four symmetry direc-

tions of the cell.

In addition, the 3D elastic problem is solved numeri-

cally, including all of the admissible modes for the discre-

tized plate þ beam system. An eigenvalue analysis on a

single cell is used with Bloch–Floquet periodic boundary

conditions to mimic the infinite array of spatially ordered

beams, as in Colombi et al. (2017). As for the experimental

configuration, the numerical cell is made up of a

1.5� 1.5 cm2 square unit cell of the plate, which is centered

on the elongated beam. The beam is 61.5 cm long and

5.8 mm in diameter. The bulk density, Young’s modulus,

and Poisson’s ratio are set to 2700 kg/m3, 69.109 GPa, and

0.33, respectively. The “true” value (6 mm) for the beam

diameter in the simulation is modified to include the experi-

mental attachment of the beams onto the plate (i.e., imperfec-

tions due to the glue), which decreases the apparent bending

stiffness of the beams. The dispersion curves obtained from

the simulations are reported superimposed on the experimen-

tal curves in Fig. 2, panel 2, according to the norm of the

wave number jj~kjj, along the path C� X �M � C.

IV. DISPERSION RELATIONS FOR THE RANDOM
AND REGULAR METASURFACES

Figure 2 presents the dispersion curves obtained with

the random lattice (Fig. 2, panel 1) and the regular square

lattice (Fig. 2, panel 2), in gray scale. The beam motion

spectra for the square lattice is shown in Fig. 2, panel 3, con-

sidering an average of the in-plane directions (x and y) over

the set of resonators in the metasurface. Numerical simula-

tion for the Brillouin zone C� X �M � C is depicted with

blue dots in Fig. 2, panel 2. Also, the free plate response A0

is depicted in red in Fig. 2, panel 1, along with the numerical

simulation for the C� X direction (blue dots), which

assumes that the average inter-beams distance is the same in

the ordered and random configurations. The agreement

between the numerical simulations and the experimental

data is excellent. As previously reported by Rupin et al.
(2014) and Williams et al. (2015), the 2D random metasur-

face (Fig. 2, panel 1) can be appropriately modeled by a

one-dimensional (1D) regular metasurface, with a lattice

size equal to the average distance between the resonators,

which we validate here.

Between 800 and 1650 Hz, the random and regular

metasurfaces show the same kind of behavior. In Fig. 2,

panel 2, the directions C� X and C�M are equivalent and

no anisotropy is discernable on the Brillouin edges.

However, the presence of flexural resonance, which is indi-

cated by the isolated picks in Figs. 2, panel 3, a–d, provokes

sharp bending of the dispersion curves, which reaches the

edges of the Brillouin zone. This means that the metasurface

behavior oscillates between supra-wavelength (the wave-

length in the metasurface region is larger than in the free

plate) and sub-wavelength (the wavelength in the metasur-

face region is smaller than in the free plate), even in the fre-

quency bandwidth of the first passband. The broad

wavelength interval can be read from Fig. 2, panel 1, with

an effective wavelength k that spreads out between k
�12 cm, (corresponding to �8 unit cells) and k �3 cm, (cor-

responding to �2 unit cells. Through their first compres-

sional resonance, the beams act alternatively (as a function

of frequency) as a mass or a spring, which dictates the

appearance of passband and bandgap (Lott and Roux,

2019b). The stopband boundaries depend on the minima and

maxima of the rod impedance, calculated as a vertical force

on the plate, as shown by Williams et al. (2015). For the ran-

dom lattice, this starts at around 1700 Hz; for the regular lat-

tice, a Bragg bandgap in the C� X direction is observed,

and the main bandgap starts only at 1900 Hz, i.e., 200 Hz

after the random lattice. The presence of a Bragg bandgap in

FIG. 2. (Color online) (1, 2) Dispersion curves measured from the experi-

mental data for the random lattice with azimuthal averaging (1), and for the

regular lattice on the Brillouin edges C� X �M � C (2). (3) Flexural

motion spectra, at the top of the beams.
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such a low-frequency regime is due to the slowing down of

the waves, and thus to a strong decrease in the wavelength

of the A0 mode inside the metasurface. Note that, at the

passband edges between 1700 and 1900 Hz, the wavelength

becomes on the order of a unit cell [Fig. 1(a-2)], and only

the diagonal of the unit cell is an admissible propagating

direction as will be discussed later in Figs. 4, column 3, c

and d. After 1900 Hz, no wave can propagate in the stop-

band. At around 2200 and 2800 Hz, the flexural motion of

the beams induces sharp leakage inside the main bandgap.

From the simulation results, two branches are visible around

each flexural resonance (Fig. 2, panels 1 and 2, blue dots).

This corresponds to degeneration of the bending mode of

one beam into two closed quasi-flat branches. However,

these branches are not discernable in the experimental data.

The time window d t used in the signal processing analysis

and the finite size of the sample prevent the identification of

these two flexural modes. In Sec. V, we focus on the pass-

band, and in particular on four frequencies, at 1500, 1690,

1750, and 1830 Hz, as highlighted with black dots in Fig. 2,

indicated by the labels a, b, c, and d.

V. WAVEFIELD PATTERNS AT SELECTED
FREQUENCIES

In Figs. 3 and 4, other views of the typical wavefield

recorded for both of the metasurfaces are shown, putting in

parallel the phase (Figs. 3 and 4, column 1), the diffused

intensity from the source (Figs. 3 and 4, column 2), and the

spatial Fourier representation in a ðkx; kyÞ graph (Figs. 3 and

4, column 3). The phase is computed as the argument of the

temporal Fourier transform of each recorded signal, with the

source inside the metasurface. The intensity is the square of

the Fourier modulus at a given frequency (as a log scale),

also with the source inside, but at an early stage of the prop-

agation (<10 ms), and the spatial Fourier transform is com-

puted for every ðkx; kyÞ possible value, stacking over small

temporal windows in the diffuse coda of both sources. The

FIG. 3. (Color online) Wavefield pat-

terns measured in the random lattice,

for the phase (1, rad), intensity (2, dB),

and in the reciprocal space (kx; ky; 3),

for the four frequencies of 1500 Hz (a),

1690 Hz (b), 1750 Hz (c), and 1830 Hz

(d). The theoretical Brillouin limit (not

valid here in the random configuration)

is also shown for comparison with

Fig. 3, as the black square areas in col-

umn 3.
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black square areas in Figs. 3 and 4, column 3, show the theo-

retical Brillouin limit ðkx; kyÞ 2 ðp=aÞðp=aÞ½ �2 that cannot

be exceeded in the regular lattice configuration.

For the random lattice, three main observations can be

made here; first, the reciprocal space shows “imperfect”

(distorted) radiation circles without clear anisotropy (Fig. 3,

column 3, a–d), even after 1750 Hz (Fig. 3, column 3, c).

The intensity leakage from the source at the early time of

the propagation is more heterogeneous here (Fig. 3, column

2, a–d) than for the regular square lattice (Fig. 4, column 2,

a–d), as will be discussed in the next paragraph. Second, the

phase reveals a diffuse speckle in the passband below

1750 Hz (Fig. 3, column 1, a–d). From previous studies

(Lott et al., 2020), we know that the scattering effects in this

random lattice can be very intense, which is translated here

into the no isotropic spreading of the intensity (Fig. 3, col-

umn 2) and into the distortion of the radiated circle in the

reciprocal space (Fig. 3, column 3). Finally, the intensity

field at and above 1750 Hz, i.e., in the main bandgap of the

random lattice, is limited to evanescent waves around the

point source (Lott et al., 2019b), as no intensity leakage is

allowed from the inside to the outside of the metasurface.

For comparison, in Fig. 4, the same representations

show the wavefield inside the regular square lattice at the

same frequencies. At around 1500 and 1690 Hz (Fig. 4, hori-

zontal panels, a and b), no anisotropy is seen for the spatial

Fourier representation, with a clear circle inside the

Brillouin limit (Fig. 4, column 3, a and b). Note that without

the procedure described earlier on the normalization of the

eigenvalues of the CSDM, the expected circle would have

been less obvious (for further explanation, see Seydoux

et al., 2017). At both frequencies, the phases of the wave-

fields (Fig. 4, column 1, a and b) highlight smaller wave-

lengths inside the metasurface than for the free plate, and

the intensity leaks from the inside to the outside of the

metasurface.

After 1750 Hz, the energy leakage from the source

inside the metasurface is anisotropic (Fig. 4, horizontal pan-

els, c and d). The “cross-shape” anisotropy spreading starts

to be visible, as previously reported by Colombi et al.

FIG. 4. (Color online) Wavefield pat-

terns measured in the regular lattice, for

the phase (1, rad), intensity in (2, dB)

and in the reciprocal space (kx; ky; 3),

for the four frequencies of 1500 Hz (a),

1690 Hz (b), 1750 Hz (c), and 1830 Hz

(d). The theoretical Brillouin limit is

shown as the black square areas in col-

umn 3 for ðkx; kyÞ 2 �ðp=aÞ ðp=aÞ½ �2.
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(2017) with numerical simulations. In the present case of a

reverberated wavefield, plane waves can be seen to travel

only in the diagonal of the beam cluster. For 1830 Hz,

Fig. 4, column 1, d, shows the superposition of these two-

plane waves, which propagate in a perpendicular direction.

In the reciprocal space, two isolated directions can be seen

for the propagating waves with nonzero coherence. In the

C� X direction, there is no propagation.

Going back to the random versus regular metasurface

configurations below 1750 Hz (Figs. 3 and 4, columns 1–3, a

and b), no distortion of the radiation circle in the reciprocal

space of the ordered metasurface is observed. This is actu-

ally as expected, according to the Bloch-Floquet theorem. In

a regular lattice, the scattering does not break the flatness of

the wave passing through, which differs from a random lat-

tice (Lott and Roux, 2019b). Here, for this specific study of

random versus regular lattice, we interpret a consequence of

this theorem in the following way. The scattering inside the

regular square lattice is fully coherent. The interferences of

the multiple scattering that occurs at the base of each beam

are constructive. In the random lattice, the destructive inter-

ferences in the resulting wavefield (Fig. 3) highlight the

incoherence of the scattering process.

As we use the same source piezoelectric disks, genera-

tor, amplifier, and plate geometry for both metasurfaces, a

ratio of two is expected between the intensity measured in

the regular square lattice, and the intensity measured in the

random lattice. To demonstrate this, two small areas are

selected (smaller than the wavelength) around the sources

located inside each metasurface, and the average diffuse

intensity is computed in the frequency band of 1.5 Hz to

1.7 kHz in this area. Figure 5(a) shows the average intensity

envelope for both of the metasurfaces on a log scale, spread-

ing from the source to a small surface surrounding it. After a

few milliseconds, the equipartition of the wavefield is

reached for both metasurfaces, meaning that the elastic

energy is equally spread in space and time. Figure 5(b)

reports the ratio between the coherent intensity (measure in

the regular square lattice) and the incoherent intensity (mea-

sured in the random lattice), with a factor of 2 retrieved,

which is usually attributed to weak localization effects. Due

to the equivalence of these two metasurfaces in terms of res-

onator density, materials, and surrounding plate geometry,

the only remaining difference in this frequency regime is the

constructive or destructive interference processes in the

multiple scattering in each of the two metasurfaces. Indeed,

a previous study on the same sample (Lott et al., 2020)

showed that the intrinsic attenuation coming from the beams

and the plate does not play a major role in the apparent loss

during the elastic wave propagation. In Fig. 5(b), each data-

point results from the spatial averaging that is needed to

reach the required ensemble average. The error bars repre-

sent the spatial variabilities of the measures, which naturally

decrease with time. The factor-2 ratio confirms the incoher-

ent versus coherent scattering that occurs in the random ver-
sus regular, respectively, metasurfaces.

VI. LEAKAGE AT FLEXURAL RESONANCES
AND NEGATIVE INDEX MATERIAL

In this last section, the effects of the flexural resonance

are discussed in terms of the anisotropy and phase in the

regular square lattice. The effects of the flexural resonances

in the full A0 bandgap have been discussed previously for

the case of the random lattice (Rupin et al., 2014, Lott and

Roux, 2019b). Inside the passband, from the analysis of the

apparent wave speed, there is no clear evidence of anisot-

ropy at flexural resonances in the experimental data.

However, inside the stopband, it is known that a negative

refracting index can appear, which combines the monopolar

and dipolar beam stress feedback at the plate surface

(Colquitt et al., 2016).

In the following, the first spatial analysis is reported for

a regular lattice of the flexural leakage inside the main

bandgap, and the emergence of the negative index material

is discussed through the dispersion curve and the projection

in the reciprocal space. The overall results are presented in

Fig. 6. Here, in Fig. 6, panel 1, magnification of the disper-

sion curve for the regular square lattice from Fig. 2, panel 1,

is shown, in the frequency band from 2.0 to 2.3 kHz. We

highlight the three closed frequencies indicated as a–c in

Fig. 6 (panel 2) for the ðkx; kyÞ representation.

First, in contrast to the first main passband (Fig. 2, panel

2, <2 kHz), here (Fig. 6, panel 1) the experimental data devi-

ate much more from the simulation in this frequency band.

The wavenumber resolution of the experimental data is not

sufficient to confirm without doubt the negative branch in the

dispersion curve. However, this double negativity is con-

firmed experimentally in Fig. 6, panel 3, a–c, that shows a

decrease in the radiation circle radius with frequency (i.e.,

from left to right). A rough estimation with azimuthal averag-

ing of the radiation circles highlights a decrease in the wave-

number over a 60 Hz frequency bandwidth. We estimate

around –3.3 m/s at 2150 Hz the group velocity, which is in the

FIG. 5. (Color online) Intensity ratio in the frequency band from 1.5 Hz to

1.7 kHz between the random and regular square lattices. (a) Time envelope

recorded at the source location. (b) Ratio between the square (regular) and

random lattice intensities.
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same order of magnitude (�–2 m/s) as recently publish

numerical simulation on a similar setup (Lott et al., 2021).

The fluctuations on the radiation circle in the measurement in

Fig. 6, panel 3, a–c, suggests a large attenuation effect in the

plate wave propagation. Recent numerical studies have shown

that the transmission of energy through the flexural resonance

motion is highly sensitive to small amounts of disorder in the

beams positions (Lott et al., 2021). We conclude that the loss

is due to strong scattering effects coming from the imperfect

position of the beams in our experimental realization of the

square lattice metasurface, and not to intrinsic damping prop-

erties of the material.

Second, the phase representation of the wavefield in Fig.

6, panel 4, a–c, highlights particular behavior. The horizontal

and vertical coherent lines seen in the phase pattern in Fig. 6,

panel 4, a and b, suggest a collective motion of the aligned

beams, with their vibration in phase. We interpret these coher-

ent lines as synchronized dipoles associated with the flexural

resonance of the beams (Lott et al., 2020). The motion of the

dipoles is aligned with the axis of symmetry (x–y) of the meta-

surface. As the frequency is increased from 2100 to 2200 Hz

(Fig. 6, panel 3, a–c], the wavelength increases and the lines

disappear. More surprising, as opposed to the results for the

end of the passband (at 1750, 1830 Hz), the anisotropy high-

lights a different direction (C�MÞ of forbidden propagation

in the flexural passband (2.0–2.2 kHz). Such behavior might

be understood as a polarization effect of the resonance, with

opposite mechanical conditions to be satisfied for a plane

wave traveling in the diagonal direction of the unit cell

(C�MÞ. On the edges of the Brillouin zone, where there is a

dipolar type of motion of the unit cell, the beam is located at a

vibration node of the plate substrate, as illustrated in Fig. 6,

panel 4, a. Consequently, in the (C�MÞ direction, a plane

wave cannot at the same time verify in the perpendicular

direction of propagation the two following conditions: (1)

zero motion amplitude just below the beam–plate attachment;

and (2) nonzeros motion amplitude at the unit-cell corner posi-

tion. No out-of-plane motion can propagate in the ðC�MÞ
direction with a high k value, in contrast to the frequency of

1830 Hz, where the plate motion is maximal under the beams.

VII. CONCLUSIONS

In this paper, we report on an experimental comparison

between two subwavelength metasurfaces made of two sets

of closely positioned elongated aluminum beams (resona-

tors) that are glued onto a thin aluminum plate with spatial

organizations that provide random or regular structures. The

consequences of these spatial arrangements are character-

ized through the dispersion curves, anisotropy, and

FIG. 6. (Color online) (1) Dispersion

curves on the Brillouin edges between

2.05 and 2.3 kHz for the square (regu-

lar) lattice (as magnified from Fig. 2,

panel 1). (2) Beam spectral motion (as

magnified from Fig. 2, panel 3). (3)

Reciprocal space imaging for the three

frequencies a, b, and c from panel 1.

(4) Phase representations of the wave-

fields for the same three frequencies as

for a–c.
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scattering properties for the two metasurfaces. We confirm a

wideband Fano-like bandgap (monopolar scattering), a

Bragg-induced bandgap, and a narrow bandgap (dipolar

scattering), driven through the multimodal response of the

resonators. In comparison to numerical simulations, the

compressional resonance effects of the beams are correctly

modeled with the Fano-like bandgap for the random and

regular metasurfaces, and the Bragg bandgap for the regular

lattice only. The flexural resonance effects, however, show

less agreement between experiments and simulations, which

we attribute to the building of the metamaterial. Finally, we

illustrate a weak localization effect with an averaged mea-

surement of the intensity at the source location, enlightening

the different scattering regimes at play between two meso-

scopic random and regular metasurfaces.
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